The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497
Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
64.1-a1
64.1-a
$4$
$4$
\(\Q(\sqrt{3}) \)
$2$
$[2, 0]$
64.1
\( 2^{6} \)
\( 2^{12} \)
$0.87554$
$(a+1)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$2$
2Cs
$1$
\( 2 \)
$1$
$27.50074327$
0.992347595
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \)
${y}^2={x}^{3}-{x}$
64.1-a2
64.1-a
$4$
$4$
\(\Q(\sqrt{3}) \)
$2$
$[2, 0]$
64.1
\( 2^{6} \)
\( 2^{12} \)
$0.87554$
$(a+1)$
0
$\Z/4\Z$
$\textsf{potential}$
$-4$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2^{2} \)
$1$
$13.75037163$
0.992347595
\( 1728 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( -4 a + 7\) , \( 0\bigr] \)
${y}^2={x}^{3}+\left(-4a+7\right){x}$
64.1-a3
64.1-a
$4$
$4$
\(\Q(\sqrt{3}) \)
$2$
$[2, 0]$
64.1
\( 2^{6} \)
\( 2^{6} \)
$0.87554$
$(a+1)$
0
$\Z/2\Z$
$\textsf{potential}$
$-16$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 1 \)
$1$
$13.75037163$
0.992347595
\( 287496 \)
\( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 11 a - 17\) , \( 17 a - 29\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(11a-17\right){x}+17a-29$
64.1-a4
64.1-a
$4$
$4$
\(\Q(\sqrt{3}) \)
$2$
$[2, 0]$
64.1
\( 2^{6} \)
\( 2^{6} \)
$0.87554$
$(a+1)$
0
$\Z/4\Z$
$\textsf{potential}$
$-16$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 1 \)
$1$
$55.00148654$
0.992347595
\( 287496 \)
\( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 10 a - 19\) , \( -36 a + 61\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-19\right){x}-36a+61$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.