Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
64.1-a1 64.1-a \(\Q(\sqrt{3}) \) \( 2^{6} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $27.50074327$ 0.992347595 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}$
64.1-a2 64.1-a \(\Q(\sqrt{3}) \) \( 2^{6} \) 0 $\Z/4\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $13.75037163$ 0.992347595 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -4 a + 7\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-4a+7\right){x}$
64.1-a3 64.1-a \(\Q(\sqrt{3}) \) \( 2^{6} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $13.75037163$ 0.992347595 \( 287496 \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 11 a - 17\) , \( 17 a - 29\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(11a-17\right){x}+17a-29$
64.1-a4 64.1-a \(\Q(\sqrt{3}) \) \( 2^{6} \) 0 $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $55.00148654$ 0.992347595 \( 287496 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 10 a - 19\) , \( -36 a + 61\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-19\right){x}-36a+61$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.