Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1331.1-a1 1331.1-a \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.097118535$ $2.186899014$ 5.295671973 \( -\frac{100335366144}{14641} a - \frac{173784268800}{14641} \) \( \bigl[0\) , \( -a\) , \( 1\) , \( -217 a + 313\) , \( 7461 a - 12690\bigr] \) ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-217a+313\right){x}+7461a-12690$
1331.1-b1 1331.1-b \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.283973633$ 1.525351799 \( -\frac{103598186306805}{14641} a + \frac{179437321887336}{14641} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -18 a - 158\) , \( 2237 a + 4468\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-18a-158\right){x}+2237a+4468$
1331.1-b2 1331.1-b \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.56794726$ 1.525351799 \( \frac{19683}{11} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -13 a - 23\) , \( -18 a - 31\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-13a-23\right){x}-18a-31$
1331.1-b3 1331.1-b \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.56794726$ 1.525351799 \( \frac{19034163}{121} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -133 a - 238\) , \( 1012 a + 1764\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-133a-238\right){x}+1012a+1764$
1331.1-b4 1331.1-b \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.283973633$ 1.525351799 \( \frac{103598186306805}{14641} a + \frac{179437321887336}{14641} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -2168 a - 3758\) , \( 70587 a + 122280\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-2168a-3758\right){x}+70587a+122280$
1331.1-c1 1331.1-c \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.564634602$ 2.710026626 \( -\frac{2861899776}{1331} a - \frac{4956954624}{1331} \) \( \bigl[0\) , \( a\) , \( 1\) , \( -17 a + 26\) , \( -1951 a + 3373\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}+\left(-17a+26\right){x}-1951a+3373$
1331.1-c2 1331.1-c \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.693903807$ 2.710026626 \( \frac{2861899776}{1331} a - \frac{4956954624}{1331} \) \( \bigl[0\) , \( -a\) , \( a\) , \( 817 a - 1414\) , \( -16259 a + 28160\bigr] \) ${y}^2+a{y}={x}^{3}-a{x}^{2}+\left(817a-1414\right){x}-16259a+28160$
1331.1-d1 1331.1-d \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.144310443$ $2.714572702$ 3.360690442 \( -\frac{318097645568}{121} a + \frac{550949826752}{121} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 913 a - 1593\) , \( -20074 a + 34718\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(913a-1593\right){x}-20074a+34718$
1331.1-d2 1331.1-d \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.072155221$ $2.714572702$ 3.360690442 \( \frac{318097645568}{121} a + \frac{550949826752}{121} \) \( \bigl[a + 1\) , \( 1\) , \( 1\) , \( 3182 a - 5515\) , \( -128631 a + 222787\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+{x}^{2}+\left(3182a-5515\right){x}-128631a+222787$
1331.1-e1 1331.1-e \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.714572702$ 0.783629640 \( -\frac{318097645568}{121} a + \frac{550949826752}{121} \) \( \bigl[a + 1\) , \( a\) , \( a\) , \( 912 a - 1595\) , \( 19391 a - 33578\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(912a-1595\right){x}+19391a-33578$
1331.1-e2 1331.1-e \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.714572702$ 0.783629640 \( \frac{318097645568}{121} a + \frac{550949826752}{121} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 3181 a - 5516\) , \( 131813 a - 228303\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(3181a-5516\right){x}+131813a-228303$
1331.1-f1 1331.1-f \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.130994861$ $4.693903807$ 1.419998250 \( -\frac{2861899776}{1331} a - \frac{4956954624}{1331} \) \( \bigl[0\) , \( -a\) , \( a\) , \( -17 a + 26\) , \( 1951 a - 3374\bigr] \) ${y}^2+a{y}={x}^{3}-a{x}^{2}+\left(-17a+26\right){x}+1951a-3374$
1331.1-f2 1331.1-f \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.392984584$ $1.564634602$ 1.419998250 \( \frac{2861899776}{1331} a - \frac{4956954624}{1331} \) \( \bigl[0\) , \( a\) , \( 1\) , \( 817 a - 1414\) , \( 16259 a - 28161\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}+\left(817a-1414\right){x}+16259a-28161$
1331.1-g1 1331.1-g \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.204418213$ $0.729021608$ 1.769643082 \( -\frac{103598186306805}{14641} a + \frac{179437321887336}{14641} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -18 a - 158\) , \( -2237 a - 4468\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-18a-158\right){x}-2237a-4468$
1331.1-g2 1331.1-g \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.051104553$ $11.66434574$ 1.769643082 \( \frac{19683}{11} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -13 a - 23\) , \( 18 a + 31\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-13a-23\right){x}+18a+31$
1331.1-g3 1331.1-g \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.102209106$ $2.916086435$ 1.769643082 \( \frac{19034163}{121} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -133 a - 238\) , \( -1012 a - 1764\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-133a-238\right){x}-1012a-1764$
1331.1-g4 1331.1-g \(\Q(\sqrt{3}) \) \( 11^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.204418213$ $0.729021608$ 1.769643082 \( \frac{103598186306805}{14641} a + \frac{179437321887336}{14641} \) \( \bigl[1\) , \( -a - 1\) , \( 0\) , \( -2168 a - 3758\) , \( -70587 a - 122280\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2168a-3758\right){x}-70587a-122280$
1331.1-h1 1331.1-h \(\Q(\sqrt{3}) \) \( 11^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.597928830$ 0.690428742 \( -\frac{100335366144}{14641} a - \frac{173784268800}{14641} \) \( \bigl[0\) , \( a\) , \( a\) , \( -217 a + 313\) , \( -7461 a + 12689\bigr] \) ${y}^2+a{y}={x}^{3}+a{x}^{2}+\left(-217a+313\right){x}-7461a+12689$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.