Base field \(\Q(\sqrt{-15}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 4 \); class number \(2\).
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
Elliptic curves in class 128.3-a over \(\Q(\sqrt{-15}) \)
Isogeny class 128.3-a contains 2 curves linked by isogenies of degree 2.
| Curve label | Weierstrass Coefficients |
|---|---|
| 128.3-a1 | \( \bigl[0\) , \( 1\) , \( 0\) , \( -4 a - 17\) , \( -12 a - 33\bigr] \) |
| 128.3-a2 | \( \bigl[0\) , \( 1\) , \( 0\) , \( a - 2\) , \( -a\bigr] \) |