Properties

Label 7.4.1.0a1.1-1.3.2a
Base 7.4.1.0a1.1
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + 7d_{0}$

Invariants

Residue field characteristic: $7$
Degree: $3$
Base field: 7.4.1.0a1.1
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $3$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.

Galois group: $C_{12}$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 3

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
7.4.3.8a1.1 $( x^{4} + 5 x^{2} + 4 x + 3 )^{3} + 7 x^{2}$ $C_{12}$ (as 12T1) $12$ $12$ $[\ ]_{3}^{4}$ $[\ ]_{3}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
7.4.3.8a1.2 $( x^{4} + 5 x^{2} + 4 x + 3 )^{3} + 7 x$ $C_{12}$ (as 12T1) $12$ $12$ $[\ ]_{3}^{4}$ $[\ ]_{3}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
7.4.3.8a1.3 $( x^{4} + 5 x^{2} + 4 x + 3 )^{3} + 7$ $C_{12}$ (as 12T1) $12$ $12$ $[\ ]_{3}^{4}$ $[\ ]_{3}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
  displayed columns for results