Defining polynomial
| $x^{2} + 7d_{0}$ |
Invariants
| Residue field characteristic: | $7$ |
| Degree: | $2$ |
| Base field: | 7.4.1.0a1.1 |
| Ramification index $e$: | $2$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $1$ |
| Absolute Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $2$ (complete) |
| Ambiguity: | $2$ |
| Mass: | $1$ |
| Absolute Mass: | $1/4$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.
| Galois group: | $C_8$ (show 1), $C_4\times C_2$ (show 1) |
| Hidden Artin slopes: | $[\ ]$ |
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Fields
Showing all 2
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 7.4.2.4a1.1 | $( x^{4} + 5 x^{2} + 4 x + 3 )^{2} + 7 x$ | $C_8$ (as 8T1) | $8$ | $8$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 7.4.2.4a1.2 | $( x^{4} + 5 x^{2} + 4 x + 3 )^{2} + 7$ | $C_4\times C_2$ (as 8T2) | $8$ | $8$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |