Properties

Label 2.1.8.31a1.87-2.1.0a
Base 2.1.8.31a1.87
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.8.31a1.87
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[3,4,5]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/8$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_4^2:C_2^2$
Hidden Artin slopes: $[2,\frac{7}{2}]$
Indices of inseparability: $[24,16,8,0]$
Associated inertia: $[1,1,1]$
Jump Set: $[1,3,7,15]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.8.62a1.293 $( x^{2} + x + 1 )^{8} + \left(16 x + 24\right) ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 x ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ $C_4^2:C_2^2$ (as 16T111) $64$ $8$ $[2, 3, \frac{7}{2}, 4, 5]^{2}$ $[1,2,\frac{5}{2},3,4]^{2}$ $[2,\frac{7}{2}]$ $[1,\frac{5}{2}]$ $[24, 16, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
  displayed columns for results