These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.72e1.1279 |
$x^{16} + 16 x^{15} + 16 x^{11} + 16 x^{9} + 16 x^{2} + 26$ |
$C_2^4.Q_{16}$ (as 16T698) |
$256$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1280 |
$x^{16} + 16 x^{15} + 16 x^{11} + 16 x^{9} + 48 x^{2} + 26$ |
$C_2^4.Q_{16}$ (as 16T698) |
$256$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1281 |
$x^{16} + 16 x^{14} + 16 x^{11} + 16 x^{9} + 16 x^{2} + 26$ |
$C_2^4.Q_{16}$ (as 16T698) |
$256$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1282 |
$x^{16} + 16 x^{14} + 16 x^{11} + 16 x^{9} + 48 x^{2} + 26$ |
$C_2^4.Q_{16}$ (as 16T698) |
$256$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1293 |
$x^{16} + 16 x^{9} + 16 x^{6} + 16 x^{2} + 26$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]^{2}$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1296 |
$x^{16} + 16 x^{15} + 16 x^{14} + 16 x^{9} + 16 x^{6} + 16 x^{2} + 26$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]^{2}$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1313 |
$x^{16} + 16 x^{13} + 16 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{2} + 26$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]^{2}$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.72e1.1316 |
$x^{16} + 16 x^{15} + 16 x^{14} + 16 x^{13} + 16 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{2} + 26$ |
$C_2^6.D_4$ (as 16T900) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8}]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4}]^{2}$ |
$[57, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |