Defining polynomial
| $x^{12} + 17d_{0}$ |
Invariants
| Residue field characteristic: | $17$ |
| Degree: | $12$ |
| Base field: | $\Q_{17}$ |
| Ramification index $e$: | $12$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $11$ |
| Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $4$ (complete) |
| Ambiguity: | $4$ |
| Mass: | $1$ |
| Absolute Mass: | $1$ |
Varying
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[2]$ |
| Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 4
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 17.1.12.11a1.1 | $x^{12} + 17$ | $S_3 \times C_4$ (as 12T11) | $24$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |
| 17.1.12.11a1.2 | $x^{12} + 51$ | $S_3 \times C_4$ (as 12T11) | $24$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |
| 17.1.12.11a1.3 | $x^{12} + 153$ | $S_3 \times C_4$ (as 12T11) | $24$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |
| 17.1.12.11a1.4 | $x^{12} + 170$ | $S_3 \times C_4$ (as 12T11) | $24$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |