Properties

Label 13.1.2.1a1.2-1.4.3a
Base 13.1.2.1a1.2
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + d_{0} \pi$

Invariants

Residue field characteristic: $13$
Degree: $4$
Base field: $\Q_{13}(\sqrt{13\cdot 2})$
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 13 }$ within this relative family, not the relative extension.

Galois group: $C_8:C_2$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
13.1.8.7a1.2 $x^{8} + 26$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ undefined
13.1.8.7a1.4 $x^{8} + 104$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{8}^{2}$ $[\ ]_{8}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^7 + 8 z^6 + 2 z^5 + 4 z^4 + 5 z^3 + 4 z^2 + 2 z + 8$ undefined
  displayed columns for results