Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.1.1.0a |
$2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$0$ |
2.2.1.0a |
$2$ |
$2$ |
$1$ |
$2$ |
$2$ |
$1$ |
$2$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$0$ |
2.1.2.2a |
$2$ |
$2$ |
$1$ |
$2$ |
$1$ |
$1$ |
$1$ |
$2$ |
$1$ |
$2$ |
$2$ |
$0$ |
$2$ |
$\Q_{2}$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$2$ |
$2$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.2.3a |
$2$ |
$2$ |
$1$ |
$2$ |
$1$ |
$1$ |
$1$ |
$2$ |
$1$ |
$2$ |
$3$ |
$0$ |
$3$ |
$\Q_{2}$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$2$ |
$4$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.3.1.0a |
$2$ |
$3$ |
$1$ |
$3$ |
$3$ |
$1$ |
$3$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$3$ |
$1$ |
$1$ |
$1/3$ |
$1/3$ |
$100\%$ |
$0$ |
2.1.3.2a |
$2$ |
$3$ |
$1$ |
$3$ |
$1$ |
$1$ |
$1$ |
$3$ |
$1$ |
$3$ |
$2$ |
$0$ |
$2$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$0$ |
2.4.1.0a |
$2$ |
$4$ |
$1$ |
$4$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.2.2.4a |
$2$ |
$4$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2$ |
$2$ |
$1$ |
$2$ |
$4$ |
$0$ |
$4$ |
$\Q_{2}$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$4$ |
$4$ |
$3$ |
$3/2$ |
$3/2$ |
$100\%$ |
$1$ |
2.2.2.6a |
$2$ |
$4$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2$ |
$2$ |
$1$ |
$2$ |
$6$ |
$0$ |
$6$ |
$\Q_{2}$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$4$ |
$6$ |
$4$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.4.4a |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$4$ |
$0$ |
$4$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + 2 a_{1} x + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.4.6a |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$6$ |
$0$ |
$6$ |
$\Q_{2}$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 4 c_{4} + 2$ |
$2$ |
$3$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.4.8a |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$8$ |
$0$ |
$8$ |
$\Q_{2}$ |
$[\frac{8}{3}, \frac{8}{3}]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + 4 b_{6} x^2 + 4 a_{5} x + 2$ |
$1$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.4.8b |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$8$ |
$0$ |
$8$ |
$\Q_{2}$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + 4 b_{7} x^3 + 2 a_{2} x^2 + 4 a_{5} x + 4 c_{4} + 8 c_{8} + 2$ |
$4$ |
$6$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$2$ |
2.1.4.9a |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$9$ |
$0$ |
$9$ |
$\Q_{2}$ |
$[2, \frac{7}{2}]$ |
$[1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}\rangle$ |
$(1, 4)$ |
$x^4 + 4 b_{7} x^3 + (2 a_{2} + 8 c_{10}) x^2 + 8 b_{9} x + 4 c_{4} + 2$ |
$4$ |
$8$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
2.1.4.10a |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$10$ |
$0$ |
$10$ |
$\Q_{2}$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$4$ |
$8$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
2.1.4.11a |
$2$ |
$4$ |
$1$ |
$4$ |
$1$ |
$1$ |
$1$ |
$4$ |
$1$ |
$4$ |
$11$ |
$0$ |
$11$ |
$\Q_{2}$ |
$[3, 4]$ |
$[2, 3]$ |
$\langle1, 2\rangle$ |
$(2, 4)$ |
$x^4 + 8 b_{11} x^3 + 4 b_{6} x^2 + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$ |
$4$ |
$20$ |
$8$ |
$8$ |
$8$ |
$100\%$ |
$2$ |
2.5.1.0a |
$2$ |
$5$ |
$1$ |
$5$ |
$5$ |
$1$ |
$5$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$1$ |
$1$ |
$1/5$ |
$1/5$ |
$100\%$ |
$0$ |
2.1.5.4a |
$2$ |
$5$ |
$1$ |
$5$ |
$1$ |
$1$ |
$1$ |
$5$ |
$1$ |
$5$ |
$4$ |
$0$ |
$4$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^5 + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$0$ |
2.6.1.0a |
$2$ |
$6$ |
$1$ |
$6$ |
$6$ |
$1$ |
$6$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$6$ |
$1$ |
$1$ |
$1/6$ |
$1/6$ |
$100\%$ |
$0$ |
2.3.2.6a |
$2$ |
$6$ |
$1$ |
$6$ |
$3$ |
$1$ |
$3$ |
$2$ |
$1$ |
$2$ |
$6$ |
$0$ |
$6$ |
$\Q_{2}$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$6$ |
$6$ |
$7$ |
$7/3$ |
$7/3$ |
$100\%$ |
$1$ |
2.3.2.9a |
$2$ |
$6$ |
$1$ |
$6$ |
$3$ |
$1$ |
$3$ |
$2$ |
$1$ |
$2$ |
$9$ |
$0$ |
$9$ |
$\Q_{2}$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$6$ |
$8$ |
$8$ |
$8/3$ |
$8/3$ |
$100\%$ |
$1$ |
2.2.3.4a |
$2$ |
$6$ |
$1$ |
$6$ |
$2$ |
$1$ |
$2$ |
$3$ |
$1$ |
$3$ |
$4$ |
$0$ |
$4$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + 2 d_{0}$ |
$6$ |
$2$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$0$ |
2.1.6.6a |
$2$ |
$6$ |
$1$ |
$6$ |
$1$ |
$1$ |
$1$ |
$6$ |
$1$ |
$6$ |
$6$ |
$0$ |
$6$ |
$\Q_{2}$ |
$[\frac{4}{3}]$ |
$[\frac{1}{3}]$ |
$\langle\frac{1}{6}\rangle$ |
$(1)$ |
$x^6 + 2 c_{2} x^2 + 2 a_{1} x + 2$ |
$2$ |
$2$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.6.8a |
$2$ |
$6$ |
$1$ |
$6$ |
$1$ |
$1$ |
$1$ |
$6$ |
$1$ |
$6$ |
$8$ |
$0$ |
$8$ |
$\Q_{2}$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(3)$ |
$x^6 + 2 b_{5} x^5 + 2 a_{3} x^3 + 4 c_{6} + 2$ |
$2$ |
$4$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.6.10a |
$2$ |
$6$ |
$1$ |
$6$ |
$1$ |
$1$ |
$1$ |
$6$ |
$1$ |
$6$ |
$10$ |
$0$ |
$10$ |
$\Q_{2}$ |
$[\frac{8}{3}]$ |
$[\frac{5}{3}]$ |
$\langle\frac{5}{6}\rangle$ |
$(5)$ |
$x^6 + 2 a_{5} x^5 + 4 c_{10} x^4 + 4 b_{9} x^3 + 4 b_{7} x + 2$ |
$2$ |
$8$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.6.11a |
$2$ |
$6$ |
$1$ |
$6$ |
$1$ |
$1$ |
$1$ |
$6$ |
$1$ |
$6$ |
$11$ |
$0$ |
$11$ |
$\Q_{2}$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(6)$ |
$x^6 + 4 b_{11} x^5 + 4 b_{9} x^3 + 4 b_{7} x + 8 c_{12} + 2$ |
$2$ |
$16$ |
$8$ |
$8$ |
$8$ |
$100\%$ |
$1$ |
2.7.1.0a |
$2$ |
$7$ |
$1$ |
$7$ |
$7$ |
$1$ |
$7$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$7$ |
$1$ |
$1$ |
$1/7$ |
$1/7$ |
$100\%$ |
$0$ |
2.1.7.6a |
$2$ |
$7$ |
$1$ |
$7$ |
$1$ |
$1$ |
$1$ |
$7$ |
$1$ |
$7$ |
$6$ |
$0$ |
$6$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^7 + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$0$ |
2.8.1.0a |
$2$ |
$8$ |
$1$ |
$8$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$0$ |
$0$ |
$0$ |
$\Q_{2}$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$8$ |
$1$ |
$1$ |
$1/8$ |
$1/8$ |
$100\%$ |
$0$ |
2.4.2.8a |
$2$ |
$8$ |
$1$ |
$8$ |
$4$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2$ |
$8$ |
$0$ |
$8$ |
$\Q_{2}$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$8$ |
$10$ |
$15$ |
$15/4$ |
$15/4$ |
$100\%$ |
$1$ |
2.4.2.12a |
$2$ |
$8$ |
$1$ |
$8$ |
$4$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2$ |
$12$ |
$0$ |
$12$ |
$\Q_{2}$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$8$ |
$12$ |
$16$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.2.4.8a |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$8$ |
$0$ |
$8$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + 2 a_{1} x + 2$ |
$2$ |
$2$ |
$3$ |
$3/2$ |
$3/2$ |
$100\%$ |
$1$ |
2.2.4.12a |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$12$ |
$0$ |
$12$ |
$\Q_{2}$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 4 c_{4} + 2$ |
$8$ |
$12$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.16a |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}$ |
$[\frac{8}{3}, \frac{8}{3}]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + 4 b_{6} x^2 + 4 a_{5} x + 2$ |
$2$ |
$7$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.16b |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + 4 b_{7} x^3 + 2 a_{2} x^2 + 4 a_{5} x + 4 c_{4} + 8 c_{8} + 2$ |
$8$ |
$49$ |
$36$ |
$18$ |
$18$ |
$100\%$ |
$2$ |
2.2.4.18a |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$18$ |
$0$ |
$18$ |
$\Q_{2}$ |
$[2, \frac{7}{2}]$ |
$[1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}\rangle$ |
$(1, 4)$ |
$x^4 + 4 b_{7} x^3 + (2 a_{2} + 8 c_{10}) x^2 + 8 b_{9} x + 4 c_{4} + 2$ |
$8$ |
$52$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$2$ |
2.2.4.20a |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$20$ |
$0$ |
$20$ |
$\Q_{2}$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$8$ |
$52$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$2$ |
2.2.4.22a |
$2$ |
$8$ |
$1$ |
$8$ |
$2$ |
$1$ |
$2$ |
$4$ |
$1$ |
$4$ |
$22$ |
$0$ |
$22$ |
$\Q_{2}$ |
$[3, 4]$ |
$[2, 3]$ |
$\langle1, 2\rangle$ |
$(2, 4)$ |
$x^4 + 8 b_{11} x^3 + 4 b_{6} x^2 + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$ |
$8$ |
$82$ |
$64$ |
$32$ |
$32$ |
$100\%$ |
$2$ |
2.1.8.8a |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$8$ |
$0$ |
$8$ |
$\Q_{2}$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$ |
$[\frac{1}{7}, \frac{1}{7}, \frac{1}{7}]$ |
$\langle\frac{1}{14}, \frac{3}{28}, \frac{1}{8}\rangle$ |
$(\frac{1}{7}, \frac{1}{7}, \frac{1}{7})$ |
$x^8 + 2 a_{1} x + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.8.10a |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$10$ |
$0$ |
$10$ |
$\Q_{2}$ |
$[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}]$ |
$[\frac{3}{7}, \frac{3}{7}, \frac{3}{7}]$ |
$\langle\frac{3}{14}, \frac{9}{28}, \frac{3}{8}\rangle$ |
$(\frac{3}{7}, \frac{3}{7}, \frac{3}{7})$ |
$x^8 + 2 a_{3} x^3 + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
2.1.8.10b |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$10$ |
$0$ |
$10$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{1}{2}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 1)$ |
$x^8 + 2 c_{4} x^4 + 2 a_{3} x^3 + 2 a_{2} x^2 + 2$ |
$2$ |
$2$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$2$ |
2.1.8.12a |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$12$ |
$0$ |
$12$ |
$\Q_{2}$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$ |
$[\frac{5}{7}, \frac{5}{7}, \frac{5}{7}]$ |
$\langle\frac{5}{14}, \frac{15}{28}, \frac{5}{8}\rangle$ |
$(\frac{5}{7}, \frac{5}{7}, \frac{5}{7})$ |
$x^8 + 2 a_{5} x^5 + 2 b_{4} x^4 + 2$ |
$1$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.8.12b |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$12$ |
$0$ |
$12$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}, 2]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + 2 b_{7} x^7 + 2 a_{5} x^5 + 2 a_{2} x^2 + 4 c_{8} + 2$ |
$2$ |
$4$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$2$ |
2.1.8.14a |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$14$ |
$0$ |
$14$ |
$\Q_{2}$ |
$[2, 2, 2]$ |
$[1, 1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\rangle$ |
$(1, 1, 1)$ |
$x^8 + 2 a_{7} x^7 + 2 b_{6} x^6 + 2 b_{4} x^4 + 4 c_{8} + 2$ |
$2$ |
$6$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
2.1.8.14b |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$14$ |
$0$ |
$14$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{5}{2}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{3}{2}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{7}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 5)$ |
$x^8 + 2 a_{7} x^7 + 4 c_{12} x^4 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 b_{9} x + 2$ |
$2$ |
$8$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
2.1.8.16a |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}$ |
$[\frac{16}{7}, \frac{16}{7}, \frac{16}{7}]$ |
$[\frac{9}{7}, \frac{9}{7}, \frac{9}{7}]$ |
$\langle\frac{9}{14}, \frac{27}{28}, \frac{9}{8}\rangle$ |
$(\frac{9}{7}, \frac{9}{7}, \frac{9}{7})$ |
$x^8 + 4 b_{10} x^2 + 4 a_{9} x + 2$ |
$1$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
2.1.8.16b |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 2]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{9}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 7)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 a_{9} x + 8 c_{16} + 2$ |
$2$ |
$16$ |
$8$ |
$8$ |
$8$ |
$100\%$ |
$2$ |
2.1.8.16c |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 1, \frac{3}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
$(1, 1, 3)$ |
$x^8 + 2 a_{6} x^6 + (2 b_{4} + 4 c_{12}) x^4 + 4 b_{11} x^3 + 4 a_{9} x + 4 c_{8} + 2$ |
$4$ |
$10$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
2.1.8.16d |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}$ |
$[2, \frac{7}{3}, \frac{7}{3}]$ |
$[1, \frac{4}{3}, \frac{4}{3}]$ |
$\langle\frac{1}{2}, \frac{11}{12}, \frac{9}{8}\rangle$ |
$(1, \frac{5}{3}, \frac{5}{3})$ |
$x^8 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 a_{9} x + 4 c_{8} + 2$ |
$2$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$2$ |
2.1.8.17a |
$2$ |
$8$ |
$1$ |
$8$ |
$1$ |
$1$ |
$1$ |
$8$ |
$1$ |
$8$ |
$17$ |
$0$ |
$17$ |
$\Q_{2}$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{13}{4}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{9}{4}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 8)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + (2 a_{2} + 8 c_{18}) x^2 + 8 b_{17} x + 2$ |
$2$ |
$32$ |
$16$ |
$16$ |
$16$ |
$100\%$ |
$2$ |