Refine search
Label | Polynomial | $p$ | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
7.7.0.1 | x7 + 6x + 4 | $7$ | $1$ | $7$ | $0$ | $C_7$ (as 7T1) | $[\ ]^{7}$ |
7.7.7.1 | x7 + 42x + 7 | $7$ | $7$ | $1$ | $7$ | $F_7$ (as 7T4) | $[7/6]_{6}$ |
7.7.7.2 | x7 + 21x + 7 | $7$ | $7$ | $1$ | $7$ | $F_7$ (as 7T4) | $[7/6]_{6}$ |
7.7.7.3 | x7 + 35x + 7 | $7$ | $7$ | $1$ | $7$ | $F_7$ (as 7T4) | $[7/6]_{6}$ |
7.7.7.4 | x7 + 14x + 7 | $7$ | $7$ | $1$ | $7$ | $F_7$ (as 7T4) | $[7/6]_{6}$ |
7.7.7.5 | x7 + 7x + 7 | $7$ | $7$ | $1$ | $7$ | $F_7$ (as 7T4) | $[7/6]_{6}$ |
7.7.7.6 | x7 + 28x + 7 | $7$ | $7$ | $1$ | $7$ | $F_7$ (as 7T4) | $[7/6]_{6}$ |
7.7.8.1 | x7 + 14x2 + 7 | $7$ | $7$ | $1$ | $8$ | $C_7:C_3$ (as 7T3) | $[4/3]_{3}$ |
7.7.8.2 | x7 + 7x2 + 7 | $7$ | $7$ | $1$ | $8$ | $C_7:C_3$ (as 7T3) | $[4/3]_{3}$ |
7.7.8.3 | x7 + 28x2 + 7 | $7$ | $7$ | $1$ | $8$ | $C_7:C_3$ (as 7T3) | $[4/3]_{3}$ |
7.7.8.4 | x7 + 21x2 + 7 | $7$ | $7$ | $1$ | $8$ | $F_7$ (as 7T4) | $[4/3]_{3}^{2}$ |
7.7.8.5 | x7 + 42x2 + 7 | $7$ | $7$ | $1$ | $8$ | $F_7$ (as 7T4) | $[4/3]_{3}^{2}$ |
7.7.8.6 | x7 + 35x2 + 7 | $7$ | $7$ | $1$ | $8$ | $F_7$ (as 7T4) | $[4/3]_{3}^{2}$ |
7.7.9.1 | x7 + 14x3 + 7 | $7$ | $7$ | $1$ | $9$ | $D_{7}$ (as 7T2) | $[3/2]_{2}$ |
7.7.9.2 | x7 + 7x3 + 7 | $7$ | $7$ | $1$ | $9$ | $F_7$ (as 7T4) | $[3/2]_{2}^{3}$ |
7.7.9.3 | x7 + 28x3 + 7 | $7$ | $7$ | $1$ | $9$ | $F_7$ (as 7T4) | $[3/2]_{2}^{3}$ |
7.7.9.4 | x7 + 35x3 + 7 | $7$ | $7$ | $1$ | $9$ | $D_{7}$ (as 7T2) | $[3/2]_{2}$ |
7.7.9.5 | x7 + 42x3 + 7 | $7$ | $7$ | $1$ | $9$ | $F_7$ (as 7T4) | $[3/2]_{2}^{3}$ |
7.7.9.6 | x7 + 21x3 + 7 | $7$ | $7$ | $1$ | $9$ | $F_7$ (as 7T4) | $[3/2]_{2}^{3}$ |
7.7.10.1 | x7 + 28x4 + 7 | $7$ | $7$ | $1$ | $10$ | $C_7:C_3$ (as 7T3) | $[5/3]_{3}$ |
7.7.10.2 | x7 + 7x4 + 7 | $7$ | $7$ | $1$ | $10$ | $C_7:C_3$ (as 7T3) | $[5/3]_{3}$ |
7.7.10.3 | x7 + 14x4 + 7 | $7$ | $7$ | $1$ | $10$ | $C_7:C_3$ (as 7T3) | $[5/3]_{3}$ |
7.7.10.4 | x7 + 21x4 + 7 | $7$ | $7$ | $1$ | $10$ | $F_7$ (as 7T4) | $[5/3]_{3}^{2}$ |
7.7.10.5 | x7 + 35x4 + 7 | $7$ | $7$ | $1$ | $10$ | $F_7$ (as 7T4) | $[5/3]_{3}^{2}$ |
7.7.10.6 | x7 + 42x4 + 7 | $7$ | $7$ | $1$ | $10$ | $F_7$ (as 7T4) | $[5/3]_{3}^{2}$ |
7.7.11.1 | x7 + 7x5 + 7 | $7$ | $7$ | $1$ | $11$ | $F_7$ (as 7T4) | $[11/6]_{6}$ |
7.7.11.2 | x7 + 28x5 + 7 | $7$ | $7$ | $1$ | $11$ | $F_7$ (as 7T4) | $[11/6]_{6}$ |
7.7.11.3 | x7 + 14x5 + 7 | $7$ | $7$ | $1$ | $11$ | $F_7$ (as 7T4) | $[11/6]_{6}$ |
7.7.11.4 | x7 + 21x5 + 7 | $7$ | $7$ | $1$ | $11$ | $F_7$ (as 7T4) | $[11/6]_{6}$ |
7.7.11.5 | x7 + 35x5 + 7 | $7$ | $7$ | $1$ | $11$ | $F_7$ (as 7T4) | $[11/6]_{6}$ |
7.7.11.6 | x7 + 42x5 + 7 | $7$ | $7$ | $1$ | $11$ | $F_7$ (as 7T4) | $[11/6]_{6}$ |
7.7.12.1 | x7 + 42x6 + 7 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.10 | x7 + 7x6 + 7 | $7$ | $7$ | $1$ | $12$ | $D_{7}$ (as 7T2) | $[2]^{2}$ |
7.7.12.11 | x7 + 14x6 + 7 | $7$ | $7$ | $1$ | $12$ | $F_7$ (as 7T4) | $[2]^{6}$ |
7.7.12.12 | x7 + 28x6 + 7 | $7$ | $7$ | $1$ | $12$ | $F_7$ (as 7T4) | $[2]^{6}$ |
7.7.12.2 | x7 + 42x6 + 56 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.3 | x7 + 42x6 + 105 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.4 | x7 + 42x6 + 154 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.5 | x7 + 42x6 + 203 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.6 | x7 + 42x6 + 252 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.7 | x7 + 42x6 + 301 | $7$ | $7$ | $1$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.7.12.8 | x7 + 21x6 + 7 | $7$ | $7$ | $1$ | $12$ | $C_7:C_3$ (as 7T3) | $[2]^{3}$ |
7.7.12.9 | x7 + 35x6 + 7 | $7$ | $7$ | $1$ | $12$ | $C_7:C_3$ (as 7T3) | $[2]^{3}$ |
7.7.13.1 | x7 + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |
7.7.13.2 | x7 + 49x2 + 98x + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |
7.7.13.3 | x7 + 98x2 + 294x + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |
7.7.13.4 | x7 + 196x2 + 147x + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |
7.7.13.5 | x7 + 98x2 + 49x + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |
7.7.13.6 | x7 + 196x2 + 196x + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |
7.7.13.7 | x7 + 49x2 + 245x + 7 | $7$ | $7$ | $1$ | $13$ | $F_7$ (as 7T4) | $[13/6]_{6}$ |