Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible slopes |
Slope content |
Ind. of Insep. |
Assoc. Inertia |
5.15.0.1 |
$15$ |
x15 + 2x5 + 3x3 + 3x2 + 4x + 3 |
$5$ |
$1$ |
$15$ |
$0$ |
$C_{15}$ (as 15T1) |
$15$ |
$1$ |
$[\ ]$ |
$[\ ]^{15}$ |
$[0]$ |
$[]$ |
5.15.10.1 |
$15$ |
x15 + 25x12 + 12x11 + 9x10 + 250x9 - 900x8 - 1302x7 + 1322x6 - 1773x5 + 11325x4 + 4989x3 + 16494x2 - 717x + 2572 |
$5$ |
$3$ |
$5$ |
$10$ |
$S_3 \times C_5$ (as 15T4) |
$10$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{10}$ |
$[0]$ |
$[2]$ |
5.15.15.1 |
$15$ |
x15 - 75x12 + 60x11 + 15x10 + 1650x9 - 1950x8 + 525x7 + 99225x6 + 29700x5 - 750x4 - 625x3 + 4500x2 + 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.10 |
$15$ |
x15 - 45x12 - 60x11 + 15x10 + 750x9 + 1725x8 + 525x7 + 44025x6 + 178200x5 + 240750x4 + 113750x3 + 3750x2 - 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.11 |
$15$ |
x15 + 15x10 + 300x9 + 300x8 + 75x7 - 3000x6 - 4425x5 - 750x4 + 1125x3 + 375x2 + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.12 |
$15$ |
x15 - 45x12 + 45x11 + 15x10 + 750x9 + 1950x8 + 1425x7 + 45075x6 + 15825x5 + 43125x4 + 7125x3 + 8250x2 + 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.13 |
$15$ |
x15 + 30x12 + 15x11 + 15x10 + 525x9 + 1800x8 + 1575x7 + 6275x6 + 23700x5 + 16875x4 - 8875x3 + 7125x2 + 375x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.14 |
$15$ |
x15 + 15x12 - 30x11 + 15x10 + 150x9 + 675x8 + 1425x7 - 175x6 + 3450x5 + 12000x4 + 56000x3 + 6750x2 - 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.15 |
$15$ |
x15 - 30x12 + 15x10 + 2025x9 + 2550x8 + 600x7 + 9625x6 + 54825x5 + 76125x4 + 35750x3 + 3750x2 + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.16 |
$15$ |
x15 - 75x12 - 90x11 + 15x10 + 2775x9 + 3900x8 + 750x7 + 93975x6 + 279825x5 + 294375x4 + 116500x3 + 5625x2 - 2250x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.17 |
$15$ |
x15 - 90x12 - 15x11 + 15x10 + 3675x9 + 3825x8 + 450x7 + 6975x6 - 8550x5 + 7125x4 + 14000x3 + 4500x2 - 375x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.18 |
$15$ |
x15 - 60x12 + 60x11 + 15x10 + 4425x9 - 2400x8 + 600x7 + 17725x6 + 88575x5 - 1875x4 - 4000x3 + 4500x2 + 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$F_5\times C_3$ (as 15T8) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.19 |
$15$ |
x15 - 60x12 - 75x11 + 15x10 + 1425x9 + 5100x8 + 4875x7 + 3375x6 + 34950x5 + 97125x4 + 103875x3 + 25875x2 - 1875x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.2 |
$15$ |
x15 + 30x12 - 60x11 + 15x10 + 300x9 - 1200x8 + 3675x7 + 400x6 - 5925x5 + 35250x4 + 101375x3 + 17625x2 - 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.20 |
$15$ |
x15 - 90x12 + 30x11 + 15x10 + 2025x9 - 225x8 + 675x7 + 30675x6 + 40575x5 + 31500x4 + 14000x3 + 5625x2 + 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.21 |
$15$ |
x15 + 45x12 + 30x11 + 15x10 + 750x9 + 1500x8 + 1950x7 + 4425x6 + 12075x5 + 14250x4 - 3500x3 + 8625x2 + 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.22 |
$15$ |
x15 + 45x12 - 30x11 + 15x10 + 1875x9 + 600x8 + 975x7 - 2925x6 - 2175x5 + 8250x4 + 2625x3 + 3750x2 - 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.23 |
$15$ |
x15 - 30x12 - 90x11 + 15x10 + 1800x8 + 3375x7 + 12100x6 + 58575x5 + 70500x4 + 16125x3 + 17625x2 - 2250x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.24 |
$15$ |
x15 - 60x12 - 60x11 + 15x10 + 525x9 + 2175x8 + 825x7 + 42025x6 + 78450x5 + 43875x4 + 15000x3 + 5625x2 - 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.25 |
$15$ |
x15 - 45x12 - 60x11 + 15x10 + 3375x9 + 8400x8 + 4350x7 - 15475x6 + 13575x5 + 136875x4 + 146000x3 + 22875x2 - 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.26 |
$15$ |
x15 - 75x12 + 30x11 + 15x10 + 2850x9 - 1500x8 - 525x7 + 23675x6 + 82200x5 + 23250x4 - 5875x3 - 750x2 + 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.27 |
$15$ |
x15 - 60x12 + 45x11 + 15x10 + 975x9 - 750x8 + 150x7 + 105575x6 + 16575x5 + 7500x4 + 375x3 + 2250x2 + 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.28 |
$15$ |
x15 - 15x12 - 75x11 + 15x10 + 1800x9 + 2250x8 + 525x7 + 18375x6 + 94575x5 + 154125x4 + 113625x3 + 3000x2 - 1875x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.29 |
$15$ |
x15 + 30x12 - 30x11 + 15x10 + 2325x9 + 2550x8 + 1500x7 + 14825x6 + 36825x5 + 44625x4 + 25750x3 + 6750x2 - 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.3 |
$15$ |
x15 - 30x12 - 90x11 + 15x10 + 1275x9 + 2775x8 + 2475x7 + 51725x6 + 127575x5 + 110250x4 + 33750x3 + 13125x2 - 2250x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.30 |
$15$ |
x15 - 45x11 + 15x10 + 2700x9 + 1800x8 + 28550x6 + 99075x5 + 101250x4 + 52875x3 - 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.31 |
$15$ |
x15 - 15x12 + 45x11 + 15x10 + 1350x9 + 900x8 + 825x7 - 4675x6 + 4575x5 + 11625x4 + 9375x3 + 4500x2 + 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.32 |
$15$ |
x15 + 30x12 - 15x11 + 15x10 + 300x9 - 300x8 + 2100x7 + 850x6 - 1425x5 + 19500x4 + 17625x3 + 9750x2 - 375x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.33 |
$15$ |
x15 - 45x12 - 60x11 + 15x10 + 375x9 + 2250x8 + 2775x7 + 11525x6 + 48825x5 + 72750x4 + 40375x3 + 15000x2 - 1500x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.34 |
$15$ |
x15 - 45x12 - 30x11 + 15x10 + 1650x9 + 3825x8 + 1125x7 + 45075x6 + 37200x5 - 750x4 + 6750x3 + 6750x2 - 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.35 |
$15$ |
x15 - 60x12 + 30x11 + 15x10 + 2100x9 + 1050x8 + 375x7 - 2700x6 - 5925x5 + 6750x4 + 2875x3 + 3375x2 + 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.36 |
$15$ |
x15 - 75x12 - 75x11 + 15x10 + 1200x9 + 3075x8 + 1200x7 + 37625x6 + 108450x5 + 108000x4 + 47000x3 + 7875x2 - 1875x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.37 |
$15$ |
x15 - 75x12 - 120x11 + 15x10 + 5475x9 + 13200x8 + 7650x7 + 77175x6 + 153075x5 + 81375x4 + 42000x3 + 40125x2 - 3000x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.38 |
$15$ |
x15 - 60x12 + 45x11 + 15x10 + 4425x9 - 1800x8 + 75x7 + 17575x6 + 66450x5 + 8625x4 - 5625x3 + 1875x2 + 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$F_5\times C_3$ (as 15T8) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.39 |
$15$ |
x15 - 60x12 + 15x10 + 900x9 - 300x8 - 675x7 + 9000x6 + 22575x5 + 14250x4 - 125x3 - 1875x2 + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.4 |
$15$ |
x15 + 15x12 - 45x11 + 15x10 + 2100x9 + 1875x8 + 1050x7 + 3675x6 + 19575x5 + 27375x4 + 19250x3 + 4875x2 - 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.40 |
$15$ |
x15 - 45x12 + 15x11 + 15x10 + 3900x9 - 450x8 - 375x7 + 38025x6 + 19575x5 + 18375x4 - 2125x3 - 750x2 + 375x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$F_5\times C_3$ (as 15T8) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.41 |
$15$ |
x15 - 60x12 - 45x11 + 15x10 + 4425x9 + 5250x8 + 975x7 + 16675x6 + 37200x5 + 48375x4 + 32375x3 + 6375x2 - 1125x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$(C_5^2 : C_4):C_3$ (as 15T19) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.42 |
$15$ |
x15 - 75x12 - 90x11 + 15x10 + 3900x9 + 8775x8 + 4125x7 + 10475x6 + 73200x5 + 146250x4 + 110500x3 + 22500x2 - 2250x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.43 |
$15$ |
x15 - 60x12 - 90x11 + 15x10 + 4800x9 + 7800x8 + 3000x7 + 103100x6 + 276075x5 + 276000x4 + 118000x3 + 16500x2 - 2250x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.44 |
$15$ |
x15 + 15x12 + 30x11 + 15x10 + 750x9 + 300x8 + 450x7 + 7425x6 + 7575x5 + 5250x4 + 2500x3 + 1875x2 + 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$F_5\times C_3$ (as 15T8) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.45 |
$15$ |
x15 + 10x2 + 15x + 5 |
$5$ |
$15$ |
$1$ |
$15$ |
$C_5^2:(C_4\times S_3)$ (as 15T27) |
$2$ |
$12$ |
$[13/12]$ |
$[13/12, 13/12]_{12}^{2}$ |
$[1, 0]$ |
$[1, 2]$ |
5.15.15.46 |
$15$ |
x15 + 10x2 + 10x + 5 |
$5$ |
$15$ |
$1$ |
$15$ |
$C_5^2:(C_4\times S_3)$ (as 15T27) |
$2$ |
$12$ |
$[13/12]$ |
$[13/12, 13/12]_{12}^{2}$ |
$[1, 0]$ |
$[1, 2]$ |
5.15.15.47 |
$15$ |
x15 + 15x2 + 5x + 5 |
$5$ |
$15$ |
$1$ |
$15$ |
$C_5^2:(C_4\times S_3)$ (as 15T27) |
$2$ |
$12$ |
$[13/12]$ |
$[13/12, 13/12]_{12}^{2}$ |
$[1, 0]$ |
$[1, 2]$ |
5.15.15.48 |
$15$ |
x15 + 10x2 + 20x + 5 |
$5$ |
$15$ |
$1$ |
$15$ |
$C_5^2:(C_4\times S_3)$ (as 15T27) |
$2$ |
$12$ |
$[13/12]$ |
$[13/12, 13/12]_{12}^{2}$ |
$[1, 0]$ |
$[1, 2]$ |
5.15.15.5 |
$15$ |
x15 + 15x10 + 900x9 + 2400x8 + 1275x7 + 23000x6 + 46575x5 + 30750x4 + 13375x3 + 6375x2 + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.6 |
$15$ |
x15 - 60x12 + 15x10 + 3900x9 + 2250x8 - 375x7 - 33000x6 + 46575x5 + 84000x4 + 27875x3 - 375x2 + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.7 |
$15$ |
x15 - 90x12 - 30x11 + 15x10 + 1500x9 + 3000x8 + 75x7 + 96700x6 + 51075x5 + 12750x4 + 10875x3 + 2625x2 - 750x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.8 |
$15$ |
x15 + 30x12 + 15x11 + 15x10 + 975x9 + 750x8 + 450x7 - 2225x6 - 675x5 + 5250x4 + 3875x3 + 1500x2 + 375x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |
5.15.15.9 |
$15$ |
x15 - 30x12 + 15x11 + 15x10 + 2325x9 + 2100x8 + 450x7 - 27225x6 - 8925x5 + 26250x4 + 17625x3 + 3000x2 + 375x + 125 |
$5$ |
$5$ |
$3$ |
$15$ |
$C_5^3:C_{12}$ (as 15T38) |
$3$ |
$4$ |
$[5/4]$ |
$[5/4, 5/4, 5/4]_{4}^{3}$ |
$[1, 0]$ |
$[1]$ |