Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Slope content |
2.12.0.1 |
$12$ |
x12 - 26x10 + 275x8 - 1500x6 + 4375x4 - 6250x2 + 7221 |
$2$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$12$ |
$1$ |
$[\ ]^{12}$ |
2.12.8.1 |
$12$ |
x12 - 6x9 + 12x6 - 8x3 + 16 |
$2$ |
$3$ |
$4$ |
$8$ |
$C_3 : C_4$ (as 12T5) |
$4$ |
$3$ |
$[\ ]_{3}^{4}$ |
2.12.8.2 |
$12$ |
x12 - 8x3 + 16 |
$2$ |
$3$ |
$4$ |
$8$ |
$C_3\times (C_3 : C_4)$ (as 12T19) |
$12$ |
$3$ |
$[\ ]_{3}^{12}$ |
2.12.12.1 |
$12$ |
x12 - 48x10 + 49x8 + 8x6 + 19x4 - 24x2 + 59 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.10 |
$12$ |
x12 - 6x10 + 23x8 - 28x6 - 9x4 - 30x2 - 15 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^2\wr C_2:C_3$ (as 12T58) |
$6$ |
$1$ |
$[2, 2, 2, 2]^{6}$ |
2.12.12.11 |
$12$ |
x12 - 6x10 - 73x8 + 140x6 + 79x4 - 6x2 + 57 |
$2$ |
$2$ |
$6$ |
$12$ |
$A_4 \times C_2$ (as 12T7) |
$6$ |
$1$ |
$[2, 2]^{6}$ |
2.12.12.12 |
$12$ |
x12 + 66x10 - 93x8 - 68x6 - 41x4 + 66x2 - 123 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_4\times A_4$ (as 12T29) |
$6$ |
$1$ |
$[2, 2, 2]^{6}$ |
2.12.12.13 |
$12$ |
x12 - 18x10 - 13x8 - 44x6 + 55x4 + 62x2 + 21 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^5.C_6$ (as 12T105) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2]^{6}$ |
2.12.12.14 |
$12$ |
x12 + 4x10 + 21x8 - 16x6 + 43x4 + 12x2 - 1 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.15 |
$12$ |
x12 - 28x10 - 63x8 - 32x6 + 19x4 + 60x2 - 21 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.16 |
$12$ |
x12 - 16x10 - 23x8 + 24x6 - 29x4 - 8x2 - 13 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.17 |
$12$ |
x12 + 22x10 + 75x8 - 12x6 - 89x4 + 54x2 - 115 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_4\times A_4$ (as 12T29) |
$12$ |
$1$ |
$[2, 2]^{12}$ |
2.12.12.18 |
$12$ |
x12 + 80x10 + 81x8 - 160x6 - 117x4 + 80x2 + 227 |
$2$ |
$2$ |
$6$ |
$12$ |
$D_4 \times C_3$ (as 12T14) |
$6$ |
$1$ |
$[2, 2]^{6}$ |
2.12.12.19 |
$12$ |
x12 - 6x10 + 27x8 - 4x6 + 7x4 + 10x2 + 29 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^5.C_6$ (as 12T105) |
$12$ |
$1$ |
$[2, 2, 2, 2]^{12}$ |
2.12.12.2 |
$12$ |
x12 - 6x10 - 13x8 - 28x6 + 15x4 - 30x2 - 3 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^5.C_6$ (as 12T105) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2]^{6}$ |
2.12.12.20 |
$12$ |
x12 - 18x10 - 49x8 - 52x6 + 39x4 + 6x2 + 9 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2\times C_2^2\wr C_2:C_3$ (as 12T87) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2]^{6}$ |
2.12.12.21 |
$12$ |
x12 + 44x10 + 45x8 - 48x6 + 59x4 - 60x2 + 23 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.22 |
$12$ |
x12 - 52x10 - 7x8 + 32x6 + 35x4 - 44x2 - 29 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.23 |
$12$ |
x12 - 2x10 - 65x8 + 100x6 - 97x4 - 98x2 + 97 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^2 \times A_4$ (as 12T25) |
$6$ |
$1$ |
$[2, 2, 2]^{6}$ |
2.12.12.24 |
$12$ |
x12 - 100x10 - 59x8 + 104x6 + 387x4 + 444x2 + 439 |
$2$ |
$2$ |
$6$ |
$12$ |
$D_4 \times C_3$ (as 12T14) |
$6$ |
$1$ |
$[2, 2]^{6}$ |
2.12.12.25 |
$12$ |
x12 - 78x10 - 1621x8 + 460x6 - 1977x4 + 866x2 + 749 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_{12}$ (as 12T1) |
$6$ |
$1$ |
$[2]^{6}$ |
2.12.12.26 |
$12$ |
x12 - 162x10 + 26423x8 + 125508x6 - 64481x4 - 122498x2 - 86071 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_6\times C_2$ (as 12T2) |
$6$ |
$1$ |
$[2]^{6}$ |
2.12.12.27 |
$12$ |
x12 - 18x10 + 171x8 + 116x6 - 313x4 + 190x2 + 877 |
$2$ |
$6$ |
$2$ |
$12$ |
$A_4:C_4$ (as 12T30) |
$4$ |
$3$ |
$[4/3, 4/3]_{3}^{4}$ |
2.12.12.28 |
$12$ |
x12 - x10 + 2x8 - x6 - 2x4 + 3x2 + 1 |
$2$ |
$6$ |
$2$ |
$12$ |
$S_4$ (as 12T9) |
$2$ |
$3$ |
$[4/3, 4/3]_{3}^{2}$ |
2.12.12.29 |
$12$ |
x12 + 6x10 + 51x8 - 252x6 - 393x4 - 234x2 - 203 |
$2$ |
$6$ |
$2$ |
$12$ |
$A_4^2.C_4$ (as 12T159) |
$12$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3]_{3}^{12}$ |
2.12.12.3 |
$12$ |
x12 - 16x10 - 51x8 - 8x6 + 43x4 + 24x2 - 57 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.30 |
$12$ |
x12 - 6x10 + 15x8 - 52x6 + 111x4 - 102x2 - 991 |
$2$ |
$6$ |
$2$ |
$12$ |
$A_4\wr C_2$ (as 12T126) |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
2.12.12.31 |
$12$ |
x12 + 4x11 - 6x10 + 8x9 - 4x8 + 8x7 - 4x6 + 4x5 - 4x4 + 8x + 8 |
$2$ |
$4$ |
$3$ |
$12$ |
12T205 |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
2.12.12.32 |
$12$ |
x12 + 6x11 - 4x10 - 2x9 + 4x8 - 8x7 - 8x6 - 8x5 - 4x4 - 8 |
$2$ |
$4$ |
$3$ |
$12$ |
$A_4\wr C_2$ (as 12T129) |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
2.12.12.33 |
$12$ |
x12 + 6x11 - 4x9 - 2x8 + 8x7 + 8x6 - 4x5 + 8x3 + 8x2 + 8 |
$2$ |
$4$ |
$3$ |
$12$ |
$C_3\times S_4$ (as 12T45) |
$6$ |
$3$ |
$[4/3, 4/3]_{3}^{6}$ |
2.12.12.34 |
$12$ |
x12 + 2x11 + 2x9 + 2x7 + 2x5 + 2x3 + 2x + 2 |
$2$ |
$12$ |
$1$ |
$12$ |
12T254 |
$6$ |
$9$ |
$[10/9, 10/9, 10/9, 10/9, 10/9, 10/9]_{9}^{6}$ |
2.12.12.4 |
$12$ |
x12 - 6x10 + 15x8 - 20x6 + 15x4 - 38x2 - 31 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2\times C_2^2\wr C_2:C_3$ (as 12T87) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2]^{6}$ |
2.12.12.5 |
$12$ |
x12 + 52x10 - 11x8 - 8x6 - 45x4 - 44x2 - 9 |
$2$ |
$2$ |
$6$ |
$12$ |
$D_4\times A_4$ (as 12T51) |
$6$ |
$1$ |
$[2, 2, 2, 2]^{6}$ |
2.12.12.6 |
$12$ |
x12 - 18x10 + 11x8 - 52x6 - x4 + 6x2 - 11 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^5.C_6$ (as 12T105) |
$12$ |
$1$ |
$[2, 2, 2, 2]^{12}$ |
2.12.12.7 |
$12$ |
x12 - 48x10 + 53x8 + 40x6 + 27x4 - 56x2 + 47 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^4:C_3.D_4$ (as 12T134) |
$6$ |
$1$ |
$[2, 2, 2, 2, 2, 2]^{6}$ |
2.12.12.8 |
$12$ |
x12 + 8x10 - 31x8 + 64x6 - 53x4 - 8x2 - 45 |
$2$ |
$2$ |
$6$ |
$12$ |
$D_4\times A_4$ (as 12T51) |
$6$ |
$1$ |
$[2, 2, 2, 2]^{6}$ |
2.12.12.9 |
$12$ |
x12 - 18x10 + 7x8 - 28x6 - x4 - 18x2 - 7 |
$2$ |
$2$ |
$6$ |
$12$ |
$C_2^2\wr C_2:C_3$ (as 12T58) |
$6$ |
$1$ |
$[2, 2, 2, 2]^{6}$ |
2.12.14.1 |
$12$ |
x12 + 2x3 + 2 |
$2$ |
$12$ |
$1$ |
$14$ |
$S_4$ (as 12T8) |
$2$ |
$3$ |
$[4/3, 4/3]_{3}^{2}$ |
2.12.14.2 |
$12$ |
x12 + 2x4 + 2x3 + 2 |
$2$ |
$12$ |
$1$ |
$14$ |
$A_4:C_4$ (as 12T27) |
$4$ |
$3$ |
$[4/3, 4/3]_{3}^{4}$ |
2.12.14.3 |
$12$ |
x12 + 2x3 + 2x2 + 2 |
$2$ |
$12$ |
$1$ |
$14$ |
$A_4\wr C_2$ (as 12T128) |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
2.12.16.1 |
$12$ |
x12 + 48x10 + 17x8 - 128x6 + 171x4 - 176x2 + 3 |
$2$ |
$6$ |
$2$ |
$16$ |
12T208 |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ |
2.12.16.10 |
$12$ |
x12 + 54x10 - 257x8 - 492x6 - 945x4 + 342x2 + 81 |
$2$ |
$6$ |
$2$ |
$16$ |
$(C_2\times A_4^2).C_2$ (as 12T158) |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3, 2]_{3}^{6}$ |
2.12.16.11 |
$12$ |
x12 + 20x10 - 44x8 - 4x6 - 16x4 - 48 |
$2$ |
$6$ |
$2$ |
$16$ |
$C_3\times (C_3 : C_4)$ (as 12T19) |
$6$ |
$3$ |
$[2]_{3}^{6}$ |
2.12.16.12 |
$12$ |
x12 + 18x10 + 171x8 - 404x6 - 281x4 - 286x2 + 461 |
$2$ |
$6$ |
$2$ |
$16$ |
$A_4^2.C_4$ (as 12T159) |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3, 2]_{3}^{6}$ |
2.12.16.13 |
$12$ |
x12 + 12x10 + 12x8 + 8x6 + 32x4 - 16x2 + 16 |
$2$ |
$6$ |
$2$ |
$16$ |
$D_6$ (as 12T3) |
$2$ |
$3$ |
$[2]_{3}^{2}$ |
2.12.16.14 |
$12$ |
x12 + 36x10 + 37x8 + 88x6 - 61x4 + 68x2 - 105 |
$2$ |
$6$ |
$2$ |
$16$ |
12T208 |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ |
2.12.16.15 |
$12$ |
x12 - 71x8 + 123x4 - 245 |
$2$ |
$6$ |
$2$ |
$16$ |
$\GL(2,\Z/4)$ (as 12T50) |
$2$ |
$3$ |
$[4/3, 4/3, 2, 2]_{3}^{2}$ |
2.12.16.16 |
$12$ |
x12 - 54x10 - 509x8 - 964x6 - 777x4 - 934x2 + 357 |
$2$ |
$6$ |
$2$ |
$16$ |
$A_4:C_4$ (as 12T30) |
$2$ |
$3$ |
$[4/3, 4/3, 2]_{3}^{2}$ |
2.12.16.17 |
$12$ |
x12 + 9x8 - 224x6 + 187x4 - 32x2 - 133 |
$2$ |
$6$ |
$2$ |
$16$ |
12T208 |
$6$ |
$3$ |
$[4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ |
2.12.16.18 |
$12$ |
x12 + x10 + 6x8 - 3x6 + 6x4 + x2 - 3 |
$2$ |
$6$ |
$2$ |
$16$ |
$C_3 : C_4$ (as 12T5) |
$2$ |
$3$ |
$[2]_{3}^{2}$ |