Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible slopes |
Slope content |
Ind. of Insep. |
Assoc. Inertia |
13.12.0.1 |
$12$ |
x12 + x8 + 5x7 + 8x6 + 11x5 + 3x4 + x3 + x2 + 4x + 2 |
$13$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$12$ |
$1$ |
$[\ ]$ |
$[\ ]^{12}$ |
$[0]$ |
$[]$ |
13.12.6.1 |
$12$ |
x12 + 780x11 + 253578x10 + 43990720x9 + 4297346257x8 + 224493831662x7 + 4938918346310x6 + 2961720498866x5 + 3005850529646x4 + 51307643736852x3 + 70292613843513x2 + 65587287977710x + 15475747398037 |
$13$ |
$2$ |
$6$ |
$6$ |
$C_6\times C_2$ (as 12T2) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$[0]$ |
$[1]$ |
13.12.6.2 |
$12$ |
x12 - 21970x6 + 314171x4 - 4084223x2 + 9653618 |
$13$ |
$2$ |
$6$ |
$6$ |
$C_{12}$ (as 12T1) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$[0]$ |
$[1]$ |
13.12.8.1 |
$12$ |
x12 + 9x10 + 88x9 + 33x8 + 216x7 - 1299x6 - 78x5 - 1797x4 - 15494x3 + 21687x2 - 41586x + 201846 |
$13$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$[0]$ |
$[1]$ |
13.12.8.2 |
$12$ |
x12 + 507x6 - 26364x3 + 57122 |
$13$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$[0]$ |
$[1]$ |
13.12.8.3 |
$12$ |
x12 - 78x9 + 2197x6 + 290004x3 + 114244 |
$13$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$[0]$ |
$[1]$ |
13.12.9.1 |
$12$ |
x12 - 52x8 + 676x4 + 265837 |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$[0]$ |
$[1]$ |
13.12.9.2 |
$12$ |
x12 + 8x10 + 44x9 + 63x8 + 264x7 + 550x6 - 6336x5 + 3843x4 + 4532x3 + 46454x2 + 30668x + 30982 |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$[0]$ |
$[1]$ |
13.12.9.3 |
$12$ |
x12 + 338x4 - 24167 |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$[0]$ |
$[1]$ |
13.12.9.4 |
$12$ |
x12 + 78x8 + 42926x4 - 31085353 |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$[0]$ |
$[1]$ |
13.12.10.1 |
$12$ |
x12 + 72x11 + 2172x10 + 35280x9 + 328380x8 + 1703232x7 + 4282170x6 + 3407400x5 + 1340820x4 + 712800x3 + 3855192x2 + 18082080x + 35650393 |
$13$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
13.12.10.2 |
$12$ |
x12 + 130x6 - 1521 |
$13$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
13.12.10.3 |
$12$ |
x12 - 1508x6 - 6084 |
$13$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
13.12.10.4 |
$12$ |
x12 - 156x6 + 338 |
$13$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
13.12.10.5 |
$12$ |
x12 - 1586x6 - 198575 |
$13$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
13.12.10.6 |
$12$ |
x12 - 1716x6 - 91260 |
$13$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$[0]$ |
$[1]$ |
13.12.11.1 |
$12$ |
x12 + 156 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.10 |
$12$ |
x12 + 143 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.11 |
$12$ |
x12 + 65 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.12 |
$12$ |
x12 + 91 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.2 |
$12$ |
x12 + 117 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.3 |
$12$ |
x12 + 130 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.4 |
$12$ |
x12 + 13 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.5 |
$12$ |
x12 + 52 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.6 |
$12$ |
x12 + 39 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.7 |
$12$ |
x12 + 26 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.8 |
$12$ |
x12 + 104 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |
13.12.11.9 |
$12$ |
x12 + 78 |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$[0]$ |
$[1]$ |