Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible slopes |
Slope content |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
13.12.0.1 |
$12$ |
$x^{12} + x^{8} + 5 x^{7} + 8 x^{6} + 11 x^{5} + 3 x^{4} + x^{3} + x^{2} + 4 x + 2$ |
$13$ |
$1$ |
$12$ |
$0$ |
$C_{12}$ (as 12T1) |
$12$ |
$1$ |
$[\ ]$ |
$[\ ]^{12}$ |
$t^{12} + t^{8} + 5 t^{7} + 8 t^{6} + 11 t^{5} + 3 t^{4} + t^{3} + t^{2} + 4 t + 2$ |
$x - 13$ |
$[0]$ |
$[\ ]$ |
13.12.6.1 |
$12$ |
$x^{12} + 780 x^{11} + 253578 x^{10} + 43990720 x^{9} + 4297346257 x^{8} + 224493831662 x^{7} + 4938918346310 x^{6} + 2961720498866 x^{5} + 3005850529646 x^{4} + 51307643736852 x^{3} + 70292613843513 x^{2} + 65587287977710 x + 15475747398037$ |
$13$ |
$2$ |
$6$ |
$6$ |
$C_6\times C_2$ (as 12T2) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$t^{6} + 10 t^{3} + 11 t^{2} + 11 t + 2$ |
$x^{2} + 130 x + 13$ |
$[0]$ |
$[1]$ |
13.12.6.2 |
$12$ |
$x^{12} - 21970 x^{6} + 314171 x^{4} - 4084223 x^{2} + 9653618$ |
$13$ |
$2$ |
$6$ |
$6$ |
$C_{12}$ (as 12T1) |
$6$ |
$2$ |
$[\ ]$ |
$[\ ]_{2}^{6}$ |
$t^{6} + 10 t^{3} + 11 t^{2} + 11 t + 2$ |
$x^{2} + 13 t$ |
$[0]$ |
$[1]$ |
13.12.8.1 |
$12$ |
$x^{12} + 9 x^{10} + 88 x^{9} + 33 x^{8} + 216 x^{7} - 1299 x^{6} - 78 x^{5} - 1797 x^{4} - 15494 x^{3} + 21687 x^{2} - 41586 x + 201846$ |
$13$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$t^{4} + 3 t^{2} + 12 t + 2$ |
$x^{3} + 13$ |
$[0]$ |
$[1]$ |
13.12.8.2 |
$12$ |
$x^{12} + 507 x^{6} - 26364 x^{3} + 57122$ |
$13$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$t^{4} + 3 t^{2} + 12 t + 2$ |
$x^{3} + 13 t$ |
$[0]$ |
$[1]$ |
13.12.8.3 |
$12$ |
$x^{12} - 78 x^{9} + 2197 x^{6} + 290004 x^{3} + 114244$ |
$13$ |
$3$ |
$4$ |
$8$ |
$C_{12}$ (as 12T1) |
$4$ |
$3$ |
$[\ ]$ |
$[\ ]_{3}^{4}$ |
$t^{4} + 3 t^{2} + 12 t + 2$ |
$x^{3} + 13 t^{2}$ |
$[0]$ |
$[1]$ |
13.12.9.1 |
$12$ |
$x^{12} - 52 x^{8} + 676 x^{4} + 265837$ |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$t^{3} + 2 t + 11$ |
$x^{4} + 13 t^{2}$ |
$[0]$ |
$[1]$ |
13.12.9.2 |
$12$ |
$x^{12} + 8 x^{10} + 44 x^{9} + 63 x^{8} + 264 x^{7} + 550 x^{6} - 6336 x^{5} + 3843 x^{4} + 4532 x^{3} + 46454 x^{2} + 30668 x + 30982$ |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$t^{3} + 2 t + 11$ |
$x^{4} + 13$ |
$[0]$ |
$[1]$ |
13.12.9.3 |
$12$ |
$x^{12} + 338 x^{4} - 24167$ |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$t^{3} + 2 t + 11$ |
$x^{4} + 13 t$ |
$[0]$ |
$[1]$ |
13.12.9.4 |
$12$ |
$x^{12} + 78 x^{8} + 42926 x^{4} - 31085353$ |
$13$ |
$4$ |
$3$ |
$9$ |
$C_{12}$ (as 12T1) |
$3$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{3}$ |
$t^{3} + 2 t + 11$ |
$x^{4} + 143 t + 26$ |
$[0]$ |
$[1]$ |
13.12.10.1 |
$12$ |
$x^{12} + 72 x^{11} + 2172 x^{10} + 35280 x^{9} + 328380 x^{8} + 1703232 x^{7} + 4282170 x^{6} + 3407400 x^{5} + 1340820 x^{4} + 712800 x^{3} + 3855192 x^{2} + 18082080 x + 35650393$ |
$13$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$t^{2} + 12 t + 2$ |
$x^{6} + 13$ |
$[0]$ |
$[1]$ |
13.12.10.2 |
$12$ |
$x^{12} + 130 x^{6} - 1521$ |
$13$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$t^{2} + 12 t + 2$ |
$x^{6} + 13 t + 143$ |
$[0]$ |
$[1]$ |
13.12.10.3 |
$12$ |
$x^{12} - 1508 x^{6} - 6084$ |
$13$ |
$6$ |
$2$ |
$10$ |
$C_6\times C_2$ (as 12T2) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$t^{2} + 12 t + 2$ |
$x^{6} + 130 t + 26$ |
$[0]$ |
$[1]$ |
13.12.10.4 |
$12$ |
$x^{12} - 156 x^{6} + 338$ |
$13$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$t^{2} + 12 t + 2$ |
$x^{6} + 13 t$ |
$[0]$ |
$[1]$ |
13.12.10.5 |
$12$ |
$x^{12} - 1586 x^{6} - 198575$ |
$13$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$t^{2} + 12 t + 2$ |
$x^{6} + 156 t + 143$ |
$[0]$ |
$[1]$ |
13.12.10.6 |
$12$ |
$x^{12} - 1716 x^{6} - 91260$ |
$13$ |
$6$ |
$2$ |
$10$ |
$C_{12}$ (as 12T1) |
$2$ |
$6$ |
$[\ ]$ |
$[\ ]_{6}^{2}$ |
$t^{2} + 12 t + 2$ |
$x^{6} + 156 t + 78$ |
$[0]$ |
$[1]$ |
13.12.11.1 |
$12$ |
$x^{12} + 156$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 156$ |
$[0]$ |
$[1]$ |
13.12.11.2 |
$12$ |
$x^{12} + 117$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 117$ |
$[0]$ |
$[1]$ |
13.12.11.3 |
$12$ |
$x^{12} + 130$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 130$ |
$[0]$ |
$[1]$ |
13.12.11.4 |
$12$ |
$x^{12} + 13$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 13$ |
$[0]$ |
$[1]$ |
13.12.11.5 |
$12$ |
$x^{12} + 52$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 52$ |
$[0]$ |
$[1]$ |
13.12.11.6 |
$12$ |
$x^{12} + 39$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 39$ |
$[0]$ |
$[1]$ |
13.12.11.7 |
$12$ |
$x^{12} + 26$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 26$ |
$[0]$ |
$[1]$ |
13.12.11.8 |
$12$ |
$x^{12} + 104$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 104$ |
$[0]$ |
$[1]$ |
13.12.11.9 |
$12$ |
$x^{12} + 78$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 78$ |
$[0]$ |
$[1]$ |
13.12.11.10 |
$12$ |
$x^{12} + 143$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 143$ |
$[0]$ |
$[1]$ |
13.12.11.11 |
$12$ |
$x^{12} + 65$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 65$ |
$[0]$ |
$[1]$ |
13.12.11.12 |
$12$ |
$x^{12} + 91$ |
$13$ |
$12$ |
$1$ |
$11$ |
$C_{12}$ (as 12T1) |
$1$ |
$12$ |
$[\ ]$ |
$[\ ]_{12}$ |
$t + 11$ |
$x^{12} + 91$ |
$[0]$ |
$[1]$ |