Refine search
Results (50 matches)
Download displayed columns for resultsLabel | Polynomial | $p$ | $f$ | $e$ | $c$ | Galois group | Artin slope content |
---|---|---|---|---|---|---|---|
7.7.1.0a1.1 | $x^{7} + 6 x + 4$ | $7$ | $7$ | $1$ | $0$ | $C_7$ (as 7T1) | $[\ ]^{7}$ |
7.1.7.7a1.1 | $x^{7} + 7 x + 7$ | $7$ | $1$ | $7$ | $7$ | $F_7$ (as 7T4) | $[\frac{7}{6}]_{6}$ |
7.1.7.7a1.2 | $x^{7} + 14 x + 7$ | $7$ | $1$ | $7$ | $7$ | $F_7$ (as 7T4) | $[\frac{7}{6}]_{6}$ |
7.1.7.7a1.3 | $x^{7} + 21 x + 7$ | $7$ | $1$ | $7$ | $7$ | $F_7$ (as 7T4) | $[\frac{7}{6}]_{6}$ |
7.1.7.7a1.4 | $x^{7} + 28 x + 7$ | $7$ | $1$ | $7$ | $7$ | $F_7$ (as 7T4) | $[\frac{7}{6}]_{6}$ |
7.1.7.7a1.5 | $x^{7} + 35 x + 7$ | $7$ | $1$ | $7$ | $7$ | $F_7$ (as 7T4) | $[\frac{7}{6}]_{6}$ |
7.1.7.7a1.6 | $x^{7} + 42 x + 7$ | $7$ | $1$ | $7$ | $7$ | $F_7$ (as 7T4) | $[\frac{7}{6}]_{6}$ |
7.1.7.8a1.1 | $x^{7} + 21 x^{2} + 7$ | $7$ | $1$ | $7$ | $8$ | $F_7$ (as 7T4) | $[\frac{4}{3}]_{3}^{2}$ |
7.1.7.8a1.2 | $x^{7} + 35 x^{2} + 7$ | $7$ | $1$ | $7$ | $8$ | $F_7$ (as 7T4) | $[\frac{4}{3}]_{3}^{2}$ |
7.1.7.8a1.3 | $x^{7} + 42 x^{2} + 7$ | $7$ | $1$ | $7$ | $8$ | $F_7$ (as 7T4) | $[\frac{4}{3}]_{3}^{2}$ |
7.1.7.8a2.1 | $x^{7} + 7 x^{2} + 7$ | $7$ | $1$ | $7$ | $8$ | $C_7:C_3$ (as 7T3) | $[\frac{4}{3}]_{3}$ |
7.1.7.8a2.2 | $x^{7} + 14 x^{2} + 7$ | $7$ | $1$ | $7$ | $8$ | $C_7:C_3$ (as 7T3) | $[\frac{4}{3}]_{3}$ |
7.1.7.8a2.3 | $x^{7} + 28 x^{2} + 7$ | $7$ | $1$ | $7$ | $8$ | $C_7:C_3$ (as 7T3) | $[\frac{4}{3}]_{3}$ |
7.1.7.9a1.1 | $x^{7} + 14 x^{3} + 7$ | $7$ | $1$ | $7$ | $9$ | $D_{7}$ (as 7T2) | $[\frac{3}{2}]_{2}$ |
7.1.7.9a1.2 | $x^{7} + 35 x^{3} + 7$ | $7$ | $1$ | $7$ | $9$ | $D_{7}$ (as 7T2) | $[\frac{3}{2}]_{2}$ |
7.1.7.9a2.1 | $x^{7} + 21 x^{3} + 7$ | $7$ | $1$ | $7$ | $9$ | $F_7$ (as 7T4) | $[\frac{3}{2}]_{2}^{3}$ |
7.1.7.9a2.2 | $x^{7} + 28 x^{3} + 7$ | $7$ | $1$ | $7$ | $9$ | $F_7$ (as 7T4) | $[\frac{3}{2}]_{2}^{3}$ |
7.1.7.9a3.1 | $x^{7} + 7 x^{3} + 7$ | $7$ | $1$ | $7$ | $9$ | $F_7$ (as 7T4) | $[\frac{3}{2}]_{2}^{3}$ |
7.1.7.9a3.2 | $x^{7} + 42 x^{3} + 7$ | $7$ | $1$ | $7$ | $9$ | $F_7$ (as 7T4) | $[\frac{3}{2}]_{2}^{3}$ |
7.1.7.10a1.1 | $x^{7} + 21 x^{4} + 7$ | $7$ | $1$ | $7$ | $10$ | $F_7$ (as 7T4) | $[\frac{5}{3}]_{3}^{2}$ |
7.1.7.10a1.2 | $x^{7} + 35 x^{4} + 7$ | $7$ | $1$ | $7$ | $10$ | $F_7$ (as 7T4) | $[\frac{5}{3}]_{3}^{2}$ |
7.1.7.10a1.3 | $x^{7} + 42 x^{4} + 7$ | $7$ | $1$ | $7$ | $10$ | $F_7$ (as 7T4) | $[\frac{5}{3}]_{3}^{2}$ |
7.1.7.10a2.1 | $x^{7} + 7 x^{4} + 7$ | $7$ | $1$ | $7$ | $10$ | $C_7:C_3$ (as 7T3) | $[\frac{5}{3}]_{3}$ |
7.1.7.10a2.2 | $x^{7} + 14 x^{4} + 7$ | $7$ | $1$ | $7$ | $10$ | $C_7:C_3$ (as 7T3) | $[\frac{5}{3}]_{3}$ |
7.1.7.10a2.3 | $x^{7} + 28 x^{4} + 7$ | $7$ | $1$ | $7$ | $10$ | $C_7:C_3$ (as 7T3) | $[\frac{5}{3}]_{3}$ |
7.1.7.11a1.1 | $x^{7} + 7 x^{5} + 7$ | $7$ | $1$ | $7$ | $11$ | $F_7$ (as 7T4) | $[\frac{11}{6}]_{6}$ |
7.1.7.11a1.2 | $x^{7} + 14 x^{5} + 7$ | $7$ | $1$ | $7$ | $11$ | $F_7$ (as 7T4) | $[\frac{11}{6}]_{6}$ |
7.1.7.11a1.3 | $x^{7} + 21 x^{5} + 7$ | $7$ | $1$ | $7$ | $11$ | $F_7$ (as 7T4) | $[\frac{11}{6}]_{6}$ |
7.1.7.11a1.4 | $x^{7} + 28 x^{5} + 7$ | $7$ | $1$ | $7$ | $11$ | $F_7$ (as 7T4) | $[\frac{11}{6}]_{6}$ |
7.1.7.11a1.5 | $x^{7} + 35 x^{5} + 7$ | $7$ | $1$ | $7$ | $11$ | $F_7$ (as 7T4) | $[\frac{11}{6}]_{6}$ |
7.1.7.11a1.6 | $x^{7} + 42 x^{5} + 7$ | $7$ | $1$ | $7$ | $11$ | $F_7$ (as 7T4) | $[\frac{11}{6}]_{6}$ |
7.1.7.12a1.1 | $x^{7} + 7 x^{6} + 7$ | $7$ | $1$ | $7$ | $12$ | $D_{7}$ (as 7T2) | $[2]^{2}$ |
7.1.7.12a2.1 | $x^{7} + 14 x^{6} + 7$ | $7$ | $1$ | $7$ | $12$ | $F_7$ (as 7T4) | $[2]^{6}$ |
7.1.7.12a3.1 | $x^{7} + 21 x^{6} + 7$ | $7$ | $1$ | $7$ | $12$ | $C_7:C_3$ (as 7T3) | $[2]^{3}$ |
7.1.7.12a4.1 | $x^{7} + 28 x^{6} + 7$ | $7$ | $1$ | $7$ | $12$ | $F_7$ (as 7T4) | $[2]^{6}$ |
7.1.7.12a5.1 | $x^{7} + 35 x^{6} + 7$ | $7$ | $1$ | $7$ | $12$ | $C_7:C_3$ (as 7T3) | $[2]^{3}$ |
7.1.7.12a6.1 | $x^{7} + 42 x^{6} + 7$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.12a6.2 | $x^{7} + 42 x^{6} + 56$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.12a6.3 | $x^{7} + 42 x^{6} + 105$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.12a6.4 | $x^{7} + 42 x^{6} + 154$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.12a6.5 | $x^{7} + 42 x^{6} + 203$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.12a6.6 | $x^{7} + 42 x^{6} + 252$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.12a6.7 | $x^{7} + 42 x^{6} + 301$ | $7$ | $1$ | $7$ | $12$ | $C_7$ (as 7T1) | $[2]$ |
7.1.7.13a1.1 | $x^{7} + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |
7.1.7.13a1.2 | $x^{7} + 49 x + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |
7.1.7.13a1.3 | $x^{7} + 98 x + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |
7.1.7.13a1.4 | $x^{7} + 147 x + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |
7.1.7.13a1.5 | $x^{7} + 196 x + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |
7.1.7.13a1.6 | $x^{7} + 245 x + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |
7.1.7.13a1.7 | $x^{7} + 294 x + 7$ | $7$ | $1$ | $7$ | $13$ | $F_7$ (as 7T4) | $[\frac{13}{6}]_{6}$ |