Learn more

Refine search


Results (1-50 of 356 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass Num. Packets
3.45.1.0a $3$ $45$ $45$ $1$ $0$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $45$ $0$ $1$ $0$
3.15.3.45a $3$ $45$ $15$ $3$ $45$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(\frac{1}{2})$ $x^3 + 3 a_{1} x + 3$ $15$ $0$ $14348906$ $0$
3.15.3.60a $3$ $45$ $15$ $3$ $60$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(1)$ $x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ $45$ $0$ $14348906$ $0$
3.15.3.75a $3$ $45$ $15$ $3$ $75$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(\frac{3}{2})$ $x^3 + 9 b_{4} x + 3$ $15$ $0$ $14348907$ $0$
3.9.5.36a $3$ $45$ $9$ $5$ $36$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^5 + 3$ $9$ $0$ $1$ $0$
3.5.9.45a $3$ $45$ $5$ $9$ $45$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^9 + 3 a_{1} x + 3$ $5$ $0$ $242$ $0$
3.5.9.50a $3$ $45$ $5$ $9$ $50$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^9 + 3 a_{2} x^2 + 3$ $5$ $0$ $242$ $0$
3.5.9.60a $3$ $45$ $5$ $9$ $60$ $[\frac{3}{2}, \frac{3}{2}]$ $[\frac{1}{2}, \frac{1}{2}]$ $\langle\frac{1}{3}, \frac{4}{9}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ $5$ $0$ $58806$ $0$
3.5.9.65a $3$ $45$ $5$ $9$ $65$ $[\frac{13}{8}, \frac{13}{8}]$ $[\frac{5}{8}, \frac{5}{8}]$ $\langle\frac{5}{12}, \frac{5}{9}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^9 + 3 a_{5} x^5 + 3$ $5$ $0$ $242$ $0$
3.5.9.65b $3$ $45$ $5$ $9$ $65$ $[\frac{3}{2}, \frac{5}{3}]$ $[\frac{1}{2}, \frac{2}{3}]$ $\langle\frac{1}{3}, \frac{5}{9}\rangle$ $(\frac{1}{2}, 1)$ $x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ $15$ $0$ $58564$ $0$
3.5.9.75a $3$ $45$ $5$ $9$ $75$ $[\frac{15}{8}, \frac{15}{8}]$ $[\frac{7}{8}, \frac{7}{8}]$ $\langle\frac{7}{12}, \frac{7}{9}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ $5$ $0$ $58806$ $0$
3.5.9.75b $3$ $45$ $5$ $9$ $75$ $[\frac{3}{2}, 2]$ $[\frac{1}{2}, 1]$ $\langle\frac{1}{3}, \frac{7}{9}\rangle$ $(\frac{1}{2}, 2)$ $x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ $15$ $0$ $14231052$ $0$
3.5.9.80a $3$ $45$ $5$ $9$ $80$ $[2, 2]$ $[1, 1]$ $\langle\frac{2}{3}, \frac{8}{9}\rangle$ $(1, 1)$ $x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ $45$ $0$ $58806$ $0$
3.5.9.80b $3$ $45$ $5$ $9$ $80$ $[\frac{3}{2}, \frac{13}{6}]$ $[\frac{1}{2}, \frac{7}{6}]$ $\langle\frac{1}{3}, \frac{8}{9}\rangle$ $(\frac{1}{2}, \frac{5}{2})$ $x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ $5$ $0$ $14231052$ $0$
3.5.9.90a $3$ $45$ $5$ $9$ $90$ $[\frac{9}{4}, \frac{9}{4}]$ $[\frac{5}{4}, \frac{5}{4}]$ $\langle\frac{5}{6}, \frac{10}{9}\rangle$ $(\frac{5}{4}, \frac{5}{4})$ $x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $5$ $0$ $58806$ $0$
3.5.9.90b $3$ $45$ $5$ $9$ $90$ $[\frac{3}{2}, \frac{5}{2}]$ $[\frac{1}{2}, \frac{3}{2}]$ $\langle\frac{1}{3}, \frac{10}{9}\rangle$ $(\frac{1}{2}, \frac{7}{2})$ $x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $5$ $0$ $3458145636$ $0$
3.5.9.90c $3$ $45$ $5$ $9$ $90$ $[2, \frac{7}{3}]$ $[1, \frac{4}{3}]$ $\langle\frac{2}{3}, \frac{10}{9}\rangle$ $(1, 2)$ $x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ $45$ $0$ $14231052$ $0$
3.5.9.95a $3$ $45$ $5$ $9$ $95$ $[\frac{19}{8}, \frac{19}{8}]$ $[\frac{11}{8}, \frac{11}{8}]$ $\langle\frac{11}{12}, \frac{11}{9}\rangle$ $(\frac{11}{8}, \frac{11}{8})$ $x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ $5$ $0$ $58806$ $0$
3.5.9.95b $3$ $45$ $5$ $9$ $95$ $[\frac{3}{2}, \frac{8}{3}]$ $[\frac{1}{2}, \frac{5}{3}]$ $\langle\frac{1}{3}, \frac{11}{9}\rangle$ $(\frac{1}{2}, 4)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ $15$ $0$ $3458145636$ $0$
3.5.9.95c $3$ $45$ $5$ $9$ $95$ $[2, \frac{5}{2}]$ $[1, \frac{3}{2}]$ $\langle\frac{2}{3}, \frac{11}{9}\rangle$ $(1, \frac{5}{2})$ $x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ $15$ $0$ $14231052$ $0$
3.5.9.100a $3$ $45$ $5$ $9$ $100$ $[\frac{3}{2}, \frac{17}{6}]$ $[\frac{1}{2}, \frac{11}{6}]$ $\langle\frac{1}{3}, \frac{4}{3}\rangle$ $(\frac{1}{2}, \frac{9}{2})$ $x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ $5$ $0$ $3472435494$ $0$
3.5.9.105a $3$ $45$ $5$ $9$ $105$ $[2, \frac{17}{6}]$ $[1, \frac{11}{6}]$ $\langle\frac{2}{3}, \frac{13}{9}\rangle$ $(1, \frac{7}{2})$ $x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ $15$ $0$ $3458145636$ $0$
3.5.9.105b $3$ $45$ $5$ $9$ $105$ $[\frac{5}{2}, \frac{8}{3}]$ $[\frac{3}{2}, \frac{5}{3}]$ $\langle1, \frac{13}{9}\rangle$ $(\frac{3}{2}, 2)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ $15$ $0$ $14289858$ $0$
3.5.9.110a $3$ $45$ $5$ $9$ $110$ $[2, 3]$ $[1, 2]$ $\langle\frac{2}{3}, \frac{14}{9}\rangle$ $(1, 4)$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ $45$ $0$ $3458145636$ $0$
3.5.9.110b $3$ $45$ $5$ $9$ $110$ $[\frac{5}{2}, \frac{17}{6}]$ $[\frac{3}{2}, \frac{11}{6}]$ $\langle1, \frac{14}{9}\rangle$ $(\frac{3}{2}, \frac{5}{2})$ $x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ $5$ $0$ $14289858$ $0$
3.5.9.115a $3$ $45$ $5$ $9$ $115$ $[2, \frac{19}{6}]$ $[1, \frac{13}{6}]$ $\langle\frac{2}{3}, \frac{5}{3}\rangle$ $(1, \frac{9}{2})$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ $15$ $0$ $3472435494$ $0$
3.5.9.120a $3$ $45$ $5$ $9$ $120$ $[\frac{5}{2}, \frac{19}{6}]$ $[\frac{3}{2}, \frac{13}{6}]$ $\langle1, \frac{16}{9}\rangle$ $(\frac{3}{2}, \frac{7}{2})$ $x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ $5$ $0$ $3472435494$ $0$
3.5.9.125a $3$ $45$ $5$ $9$ $125$ $[\frac{5}{2}, \frac{10}{3}]$ $[\frac{3}{2}, \frac{7}{3}]$ $\langle1, \frac{17}{9}\rangle$ $(\frac{3}{2}, 4)$ $x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $15$ $0$ $3472435494$ $0$
3.5.9.130a $3$ $45$ $5$ $9$ $130$ $[\frac{5}{2}, \frac{7}{2}]$ $[\frac{3}{2}, \frac{5}{2}]$ $\langle1, 2\rangle$ $(\frac{3}{2}, \frac{9}{2})$ $x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $5$ $0$ $3486784401$ $0$
3.3.15.45a $3$ $45$ $3$ $15$ $45$ $[\frac{11}{10}]$ $[\frac{1}{10}]$ $\langle\frac{1}{15}\rangle$ $(\frac{1}{2})$ $x^{15} + 3 a_{1} x + 3$ $3$ $0$ $26$ $0$
3.3.15.48a $3$ $45$ $3$ $15$ $48$ $[\frac{6}{5}]$ $[\frac{1}{5}]$ $\langle\frac{2}{15}\rangle$ $(1)$ $x^{15} + 3 c_{3} x^3 + 3 a_{2} x^2 + 3$ $9$ $0$ $26$ $0$
3.3.15.54a $3$ $45$ $3$ $15$ $54$ $[\frac{7}{5}]$ $[\frac{2}{5}]$ $\langle\frac{4}{15}\rangle$ $(2)$ $x^{15} + 3 c_{6} x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3$ $9$ $0$ $702$ $0$
3.3.15.57a $3$ $45$ $3$ $15$ $57$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(\frac{5}{2})$ $x^{15} + 3 b_{7} x^7 + 3 a_{5} x^5 + 3$ $3$ $0$ $702$ $0$
3.3.15.63a $3$ $45$ $3$ $15$ $63$ $[\frac{17}{10}]$ $[\frac{7}{10}]$ $\langle\frac{7}{15}\rangle$ $(\frac{7}{2})$ $x^{15} + 3 b_{10} x^{10} + 3 b_{8} x^8 + 3 a_{7} x^7 + 3$ $3$ $0$ $18954$ $0$
3.3.15.66a $3$ $45$ $3$ $15$ $66$ $[\frac{9}{5}]$ $[\frac{4}{5}]$ $\langle\frac{8}{15}\rangle$ $(4)$ $x^{15} + 3 c_{12} x^{12} + 3 b_{11} x^{11} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3$ $9$ $0$ $18954$ $0$
3.3.15.72a $3$ $45$ $3$ $15$ $72$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(5)$ $x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 9 c_{15} + 3$ $9$ $0$ $511758$ $0$
3.3.15.75a $3$ $45$ $3$ $15$ $75$ $[\frac{21}{10}]$ $[\frac{11}{10}]$ $\langle\frac{11}{15}\rangle$ $(\frac{11}{2})$ $x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 9 b_{16} x + 3$ $3$ $0$ $511758$ $0$
3.3.15.81a $3$ $45$ $3$ $15$ $81$ $[\frac{23}{10}]$ $[\frac{13}{10}]$ $\langle\frac{13}{15}\rangle$ $(\frac{13}{2})$ $x^{15} + 3 b_{14} x^{14} + 3 a_{13} x^{13} + 9 b_{19} x^4 + 9 b_{17} x^2 + 9 b_{16} x + 3$ $3$ $0$ $13817466$ $0$
3.3.15.84a $3$ $45$ $3$ $15$ $84$ $[\frac{12}{5}]$ $[\frac{7}{5}]$ $\langle\frac{14}{15}\rangle$ $(7)$ $x^{15} + 3 a_{14} x^{14} + 9 c_{21} x^6 + 9 b_{20} x^5 + 9 b_{19} x^4 + 9 b_{17} x^2 + 9 b_{16} x + 3$ $9$ $0$ $13817466$ $0$
3.3.15.87a $3$ $45$ $3$ $15$ $87$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(\frac{15}{2})$ $x^{15} + 9 b_{22} x^7 + 9 b_{20} x^5 + 9 b_{19} x^4 + 9 b_{17} x^2 + 9 b_{16} x + 3$ $3$ $0$ $14348907$ $0$
3.1.45.45a $3$ $45$ $1$ $45$ $45$ $[\frac{41}{40}, \frac{41}{40}]$ $[\frac{1}{40}, \frac{1}{40}]$ $\langle\frac{1}{60}, \frac{1}{45}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^{45} + 3 a_{1} x + 3$ $1$ $0$ $2$ $0$
3.1.45.46a $3$ $45$ $1$ $45$ $46$ $[\frac{21}{20}, \frac{21}{20}]$ $[\frac{1}{20}, \frac{1}{20}]$ $\langle\frac{1}{30}, \frac{2}{45}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^{45} + 3 a_{2} x^2 + 3$ $1$ $0$ $2$ $0$
3.1.45.48a $3$ $45$ $1$ $45$ $48$ $[\frac{11}{10}, \frac{11}{10}]$ $[\frac{1}{10}, \frac{1}{10}]$ $\langle\frac{1}{15}, \frac{4}{45}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^{45} + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ $1$ $0$ $6$ $0$
3.1.45.49a $3$ $45$ $1$ $45$ $49$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^{45} + 3 a_{5} x^5 + 3$ $1$ $0$ $2$ $0$
3.1.45.49b $3$ $45$ $1$ $45$ $49$ $[\frac{11}{10}, \frac{17}{15}]$ $[\frac{1}{10}, \frac{2}{15}]$ $\langle\frac{1}{15}, \frac{1}{9}\rangle$ $(\frac{1}{2}, 1)$ $x^{45} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ $3$ $0$ $4$ $0$
3.1.45.51a $3$ $45$ $1$ $45$ $51$ $[\frac{47}{40}, \frac{47}{40}]$ $[\frac{7}{40}, \frac{7}{40}]$ $\langle\frac{7}{60}, \frac{7}{45}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^{45} + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ $1$ $0$ $6$ $0$
3.1.45.51b $3$ $45$ $1$ $45$ $51$ $[\frac{11}{10}, \frac{6}{5}]$ $[\frac{1}{10}, \frac{1}{5}]$ $\langle\frac{1}{15}, \frac{7}{45}\rangle$ $(\frac{1}{2}, 2)$ $x^{45} + 3 c_{9} x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 3$ $3$ $0$ $12$ $0$
3.1.45.52a $3$ $45$ $1$ $45$ $52$ $[\frac{6}{5}, \frac{6}{5}]$ $[\frac{1}{5}, \frac{1}{5}]$ $\langle\frac{2}{15}, \frac{8}{45}\rangle$ $(1, 1)$ $x^{45} + 3 c_{9} x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 3$ $3$ $0$ $6$ $0$
3.1.45.52b $3$ $45$ $1$ $45$ $52$ $[\frac{11}{10}, \frac{37}{30}]$ $[\frac{1}{10}, \frac{7}{30}]$ $\langle\frac{1}{15}, \frac{8}{45}\rangle$ $(\frac{1}{2}, \frac{5}{2})$ $x^{45} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 a_{3} x^3 + 3$ $1$ $0$ $12$ $0$
3.1.45.54a $3$ $45$ $1$ $45$ $54$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{5}{4}, \frac{5}{4})$ $x^{45} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3$ $1$ $0$ $6$ $0$
Next   displayed columns for results