| Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
| 3.45.1.0a |
$3$ |
$45$ |
$45$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$45$ |
$0$ |
$1$ |
$1/45$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
| 3.15.3.45a |
$3$ |
$45$ |
$15$ |
$3$ |
$45$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{1}{2})$ |
$x^3 + 3 a_{1} x + 3$ |
$15$ |
$0$ |
$14348906$ |
$14348906/15$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.15.3.60a |
$3$ |
$45$ |
$15$ |
$3$ |
$60$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(1)$ |
$x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ |
$45$ |
$0$ |
$14348906$ |
$14348906/15$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.15.3.75a |
$3$ |
$45$ |
$15$ |
$3$ |
$75$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(\frac{3}{2})$ |
$x^3 + 9 b_{4} x + 3$ |
$15$ |
$0$ |
$14348907$ |
$4782969/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.9.5.36a |
$3$ |
$45$ |
$9$ |
$5$ |
$36$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^5 + 3$ |
$9$ |
$0$ |
$1$ |
$1/9$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
| 3.5.9.45a |
$3$ |
$45$ |
$5$ |
$9$ |
$45$ |
$[\frac{9}{8}, \frac{9}{8}]$ |
$[\frac{1}{8}, \frac{1}{8}]$ |
$\langle\frac{1}{12}, \frac{1}{9}\rangle$ |
$(\frac{1}{8}, \frac{1}{8})$ |
$x^9 + 3 a_{1} x + 3$ |
$5$ |
$0$ |
$242$ |
$242/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.50a |
$3$ |
$45$ |
$5$ |
$9$ |
$50$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$[\frac{1}{4}, \frac{1}{4}]$ |
$\langle\frac{1}{6}, \frac{2}{9}\rangle$ |
$(\frac{1}{4}, \frac{1}{4})$ |
$x^9 + 3 a_{2} x^2 + 3$ |
$5$ |
$0$ |
$242$ |
$242/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.60a |
$3$ |
$45$ |
$5$ |
$9$ |
$60$ |
$[\frac{3}{2}, \frac{3}{2}]$ |
$[\frac{1}{2}, \frac{1}{2}]$ |
$\langle\frac{1}{3}, \frac{4}{9}\rangle$ |
$(\frac{1}{2}, \frac{1}{2})$ |
$x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ |
$5$ |
$0$ |
$58806$ |
$58806/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.65a |
$3$ |
$45$ |
$5$ |
$9$ |
$65$ |
$[\frac{13}{8}, \frac{13}{8}]$ |
$[\frac{5}{8}, \frac{5}{8}]$ |
$\langle\frac{5}{12}, \frac{5}{9}\rangle$ |
$(\frac{5}{8}, \frac{5}{8})$ |
$x^9 + 3 a_{5} x^5 + 3$ |
$5$ |
$0$ |
$242$ |
$242/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.65b |
$3$ |
$45$ |
$5$ |
$9$ |
$65$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$[\frac{1}{2}, \frac{2}{3}]$ |
$\langle\frac{1}{3}, \frac{5}{9}\rangle$ |
$(\frac{1}{2}, 1)$ |
$x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ |
$15$ |
$0$ |
$58564$ |
$58564/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.75a |
$3$ |
$45$ |
$5$ |
$9$ |
$75$ |
$[\frac{15}{8}, \frac{15}{8}]$ |
$[\frac{7}{8}, \frac{7}{8}]$ |
$\langle\frac{7}{12}, \frac{7}{9}\rangle$ |
$(\frac{7}{8}, \frac{7}{8})$ |
$x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ |
$5$ |
$0$ |
$58806$ |
$58806/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.75b |
$3$ |
$45$ |
$5$ |
$9$ |
$75$ |
$[\frac{3}{2}, 2]$ |
$[\frac{1}{2}, 1]$ |
$\langle\frac{1}{3}, \frac{7}{9}\rangle$ |
$(\frac{1}{2}, 2)$ |
$x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ |
$15$ |
$0$ |
$14231052$ |
$14231052/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.80a |
$3$ |
$45$ |
$5$ |
$9$ |
$80$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{2}{3}, \frac{8}{9}\rangle$ |
$(1, 1)$ |
$x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ |
$45$ |
$0$ |
$58806$ |
$58806/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.80b |
$3$ |
$45$ |
$5$ |
$9$ |
$80$ |
$[\frac{3}{2}, \frac{13}{6}]$ |
$[\frac{1}{2}, \frac{7}{6}]$ |
$\langle\frac{1}{3}, \frac{8}{9}\rangle$ |
$(\frac{1}{2}, \frac{5}{2})$ |
$x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ |
$5$ |
$0$ |
$14231052$ |
$14231052/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.90a |
$3$ |
$45$ |
$5$ |
$9$ |
$90$ |
$[\frac{9}{4}, \frac{9}{4}]$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$\langle\frac{5}{6}, \frac{10}{9}\rangle$ |
$(\frac{5}{4}, \frac{5}{4})$ |
$x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ |
$5$ |
$0$ |
$58806$ |
$58806/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.90b |
$3$ |
$45$ |
$5$ |
$9$ |
$90$ |
$[\frac{3}{2}, \frac{5}{2}]$ |
$[\frac{1}{2}, \frac{3}{2}]$ |
$\langle\frac{1}{3}, \frac{10}{9}\rangle$ |
$(\frac{1}{2}, \frac{7}{2})$ |
$x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ |
$5$ |
$0$ |
$3458145636$ |
$3458145636/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.90c |
$3$ |
$45$ |
$5$ |
$9$ |
$90$ |
$[2, \frac{7}{3}]$ |
$[1, \frac{4}{3}]$ |
$\langle\frac{2}{3}, \frac{10}{9}\rangle$ |
$(1, 2)$ |
$x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ |
$45$ |
$0$ |
$14231052$ |
$14231052/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.95a |
$3$ |
$45$ |
$5$ |
$9$ |
$95$ |
$[\frac{19}{8}, \frac{19}{8}]$ |
$[\frac{11}{8}, \frac{11}{8}]$ |
$\langle\frac{11}{12}, \frac{11}{9}\rangle$ |
$(\frac{11}{8}, \frac{11}{8})$ |
$x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ |
$5$ |
$0$ |
$58806$ |
$58806/5$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.5.9.95b |
$3$ |
$45$ |
$5$ |
$9$ |
$95$ |
$[\frac{3}{2}, \frac{8}{3}]$ |
$[\frac{1}{2}, \frac{5}{3}]$ |
$\langle\frac{1}{3}, \frac{11}{9}\rangle$ |
$(\frac{1}{2}, 4)$ |
$x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ |
$15$ |
$0$ |
$3458145636$ |
$3458145636/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.95c |
$3$ |
$45$ |
$5$ |
$9$ |
$95$ |
$[2, \frac{5}{2}]$ |
$[1, \frac{3}{2}]$ |
$\langle\frac{2}{3}, \frac{11}{9}\rangle$ |
$(1, \frac{5}{2})$ |
$x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ |
$15$ |
$0$ |
$14231052$ |
$14231052/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.100a |
$3$ |
$45$ |
$5$ |
$9$ |
$100$ |
$[\frac{3}{2}, \frac{17}{6}]$ |
$[\frac{1}{2}, \frac{11}{6}]$ |
$\langle\frac{1}{3}, \frac{4}{3}\rangle$ |
$(\frac{1}{2}, \frac{9}{2})$ |
$x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ |
$5$ |
$0$ |
$3472435494$ |
$3472435494/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.105a |
$3$ |
$45$ |
$5$ |
$9$ |
$105$ |
$[2, \frac{17}{6}]$ |
$[1, \frac{11}{6}]$ |
$\langle\frac{2}{3}, \frac{13}{9}\rangle$ |
$(1, \frac{7}{2})$ |
$x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ |
$15$ |
$0$ |
$3458145636$ |
$3458145636/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.105b |
$3$ |
$45$ |
$5$ |
$9$ |
$105$ |
$[\frac{5}{2}, \frac{8}{3}]$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$\langle1, \frac{13}{9}\rangle$ |
$(\frac{3}{2}, 2)$ |
$x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ |
$15$ |
$0$ |
$14289858$ |
$14289858/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.110a |
$3$ |
$45$ |
$5$ |
$9$ |
$110$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{2}{3}, \frac{14}{9}\rangle$ |
$(1, 4)$ |
$x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ |
$45$ |
$0$ |
$3458145636$ |
$3458145636/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.110b |
$3$ |
$45$ |
$5$ |
$9$ |
$110$ |
$[\frac{5}{2}, \frac{17}{6}]$ |
$[\frac{3}{2}, \frac{11}{6}]$ |
$\langle1, \frac{14}{9}\rangle$ |
$(\frac{3}{2}, \frac{5}{2})$ |
$x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ |
$5$ |
$0$ |
$14289858$ |
$14289858/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.115a |
$3$ |
$45$ |
$5$ |
$9$ |
$115$ |
$[2, \frac{19}{6}]$ |
$[1, \frac{13}{6}]$ |
$\langle\frac{2}{3}, \frac{5}{3}\rangle$ |
$(1, \frac{9}{2})$ |
$x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ |
$15$ |
$0$ |
$3472435494$ |
$3472435494/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.120a |
$3$ |
$45$ |
$5$ |
$9$ |
$120$ |
$[\frac{5}{2}, \frac{19}{6}]$ |
$[\frac{3}{2}, \frac{13}{6}]$ |
$\langle1, \frac{16}{9}\rangle$ |
$(\frac{3}{2}, \frac{7}{2})$ |
$x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ |
$5$ |
$0$ |
$3472435494$ |
$3472435494/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.125a |
$3$ |
$45$ |
$5$ |
$9$ |
$125$ |
$[\frac{5}{2}, \frac{10}{3}]$ |
$[\frac{3}{2}, \frac{7}{3}]$ |
$\langle1, \frac{17}{9}\rangle$ |
$(\frac{3}{2}, 4)$ |
$x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ |
$15$ |
$0$ |
$3472435494$ |
$3472435494/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.5.9.130a |
$3$ |
$45$ |
$5$ |
$9$ |
$130$ |
$[\frac{5}{2}, \frac{7}{2}]$ |
$[\frac{3}{2}, \frac{5}{2}]$ |
$\langle1, 2\rangle$ |
$(\frac{3}{2}, \frac{9}{2})$ |
$x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ |
$5$ |
$0$ |
$3486784401$ |
$3486784401/5$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.3.15.45a |
$3$ |
$45$ |
$3$ |
$15$ |
$45$ |
$[\frac{11}{10}]$ |
$[\frac{1}{10}]$ |
$\langle\frac{1}{15}\rangle$ |
$(\frac{1}{2})$ |
$x^{15} + 3 a_{1} x + 3$ |
$3$ |
$0$ |
$26$ |
$26/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.48a |
$3$ |
$45$ |
$3$ |
$15$ |
$48$ |
$[\frac{6}{5}]$ |
$[\frac{1}{5}]$ |
$\langle\frac{2}{15}\rangle$ |
$(1)$ |
$x^{15} + 3 c_{3} x^3 + 3 a_{2} x^2 + 3$ |
$9$ |
$0$ |
$26$ |
$26/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.54a |
$3$ |
$45$ |
$3$ |
$15$ |
$54$ |
$[\frac{7}{5}]$ |
$[\frac{2}{5}]$ |
$\langle\frac{4}{15}\rangle$ |
$(2)$ |
$x^{15} + 3 c_{6} x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3$ |
$9$ |
$0$ |
$702$ |
$234$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.57a |
$3$ |
$45$ |
$3$ |
$15$ |
$57$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{5}{2})$ |
$x^{15} + 3 b_{7} x^7 + 3 a_{5} x^5 + 3$ |
$3$ |
$0$ |
$702$ |
$234$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.63a |
$3$ |
$45$ |
$3$ |
$15$ |
$63$ |
$[\frac{17}{10}]$ |
$[\frac{7}{10}]$ |
$\langle\frac{7}{15}\rangle$ |
$(\frac{7}{2})$ |
$x^{15} + 3 b_{10} x^{10} + 3 b_{8} x^8 + 3 a_{7} x^7 + 3$ |
$3$ |
$0$ |
$18954$ |
$6318$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.66a |
$3$ |
$45$ |
$3$ |
$15$ |
$66$ |
$[\frac{9}{5}]$ |
$[\frac{4}{5}]$ |
$\langle\frac{8}{15}\rangle$ |
$(4)$ |
$x^{15} + 3 c_{12} x^{12} + 3 b_{11} x^{11} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3$ |
$9$ |
$0$ |
$18954$ |
$6318$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.72a |
$3$ |
$45$ |
$3$ |
$15$ |
$72$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(5)$ |
$x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 9 c_{15} + 3$ |
$9$ |
$0$ |
$511758$ |
$170586$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.75a |
$3$ |
$45$ |
$3$ |
$15$ |
$75$ |
$[\frac{21}{10}]$ |
$[\frac{11}{10}]$ |
$\langle\frac{11}{15}\rangle$ |
$(\frac{11}{2})$ |
$x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 9 b_{16} x + 3$ |
$3$ |
$0$ |
$511758$ |
$170586$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.81a |
$3$ |
$45$ |
$3$ |
$15$ |
$81$ |
$[\frac{23}{10}]$ |
$[\frac{13}{10}]$ |
$\langle\frac{13}{15}\rangle$ |
$(\frac{13}{2})$ |
$x^{15} + 3 b_{14} x^{14} + 3 a_{13} x^{13} + 9 b_{19} x^4 + 9 b_{17} x^2 + 9 b_{16} x + 3$ |
$3$ |
$0$ |
$13817466$ |
$4605822$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.84a |
$3$ |
$45$ |
$3$ |
$15$ |
$84$ |
$[\frac{12}{5}]$ |
$[\frac{7}{5}]$ |
$\langle\frac{14}{15}\rangle$ |
$(7)$ |
$x^{15} + 3 a_{14} x^{14} + 9 c_{21} x^6 + 9 b_{20} x^5 + 9 b_{19} x^4 + 9 b_{17} x^2 + 9 b_{16} x + 3$ |
$9$ |
$0$ |
$13817466$ |
$4605822$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.3.15.87a |
$3$ |
$45$ |
$3$ |
$15$ |
$87$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(\frac{15}{2})$ |
$x^{15} + 9 b_{22} x^7 + 9 b_{20} x^5 + 9 b_{19} x^4 + 9 b_{17} x^2 + 9 b_{16} x + 3$ |
$3$ |
$0$ |
$14348907$ |
$4782969$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.45a |
$3$ |
$45$ |
$1$ |
$45$ |
$45$ |
$[\frac{41}{40}, \frac{41}{40}]$ |
$[\frac{1}{40}, \frac{1}{40}]$ |
$\langle\frac{1}{60}, \frac{1}{45}\rangle$ |
$(\frac{1}{8}, \frac{1}{8})$ |
$x^{45} + 3 a_{1} x + 3$ |
$1$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.46a |
$3$ |
$45$ |
$1$ |
$45$ |
$46$ |
$[\frac{21}{20}, \frac{21}{20}]$ |
$[\frac{1}{20}, \frac{1}{20}]$ |
$\langle\frac{1}{30}, \frac{2}{45}\rangle$ |
$(\frac{1}{4}, \frac{1}{4})$ |
$x^{45} + 3 a_{2} x^2 + 3$ |
$1$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.48a |
$3$ |
$45$ |
$1$ |
$45$ |
$48$ |
$[\frac{11}{10}, \frac{11}{10}]$ |
$[\frac{1}{10}, \frac{1}{10}]$ |
$\langle\frac{1}{15}, \frac{4}{45}\rangle$ |
$(\frac{1}{2}, \frac{1}{2})$ |
$x^{45} + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ |
$1$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.49a |
$3$ |
$45$ |
$1$ |
$45$ |
$49$ |
$[\frac{9}{8}, \frac{9}{8}]$ |
$[\frac{1}{8}, \frac{1}{8}]$ |
$\langle\frac{1}{12}, \frac{1}{9}\rangle$ |
$(\frac{5}{8}, \frac{5}{8})$ |
$x^{45} + 3 a_{5} x^5 + 3$ |
$1$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.49b |
$3$ |
$45$ |
$1$ |
$45$ |
$49$ |
$[\frac{11}{10}, \frac{17}{15}]$ |
$[\frac{1}{10}, \frac{2}{15}]$ |
$\langle\frac{1}{15}, \frac{1}{9}\rangle$ |
$(\frac{1}{2}, 1)$ |
$x^{45} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ |
$3$ |
$0$ |
$4$ |
$4$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.1.45.51a |
$3$ |
$45$ |
$1$ |
$45$ |
$51$ |
$[\frac{47}{40}, \frac{47}{40}]$ |
$[\frac{7}{40}, \frac{7}{40}]$ |
$\langle\frac{7}{60}, \frac{7}{45}\rangle$ |
$(\frac{7}{8}, \frac{7}{8})$ |
$x^{45} + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ |
$1$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.51b |
$3$ |
$45$ |
$1$ |
$45$ |
$51$ |
$[\frac{11}{10}, \frac{6}{5}]$ |
$[\frac{1}{10}, \frac{1}{5}]$ |
$\langle\frac{1}{15}, \frac{7}{45}\rangle$ |
$(\frac{1}{2}, 2)$ |
$x^{45} + 3 c_{9} x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 3$ |
$3$ |
$0$ |
$12$ |
$12$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.1.45.52a |
$3$ |
$45$ |
$1$ |
$45$ |
$52$ |
$[\frac{6}{5}, \frac{6}{5}]$ |
$[\frac{1}{5}, \frac{1}{5}]$ |
$\langle\frac{2}{15}, \frac{8}{45}\rangle$ |
$(1, 1)$ |
$x^{45} + 3 c_{9} x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 3$ |
$3$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
| 3.1.45.52b |
$3$ |
$45$ |
$1$ |
$45$ |
$52$ |
$[\frac{11}{10}, \frac{37}{30}]$ |
$[\frac{1}{10}, \frac{7}{30}]$ |
$\langle\frac{1}{15}, \frac{8}{45}\rangle$ |
$(\frac{1}{2}, \frac{5}{2})$ |
$x^{45} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 a_{3} x^3 + 3$ |
$1$ |
$0$ |
$12$ |
$12$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
| 3.1.45.54a |
$3$ |
$45$ |
$1$ |
$45$ |
$54$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$[\frac{1}{4}, \frac{1}{4}]$ |
$\langle\frac{1}{6}, \frac{2}{9}\rangle$ |
$(\frac{5}{4}, \frac{5}{4})$ |
$x^{45} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3$ |
$1$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
$0$ |