Learn more

The results below are complete, since the LMFDB contains all families of p-adic fields of degree at most 47 and residue characteristic at most 199

Refine search


Results (8 matches)

  displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass Num. Packets
41.40.1.0a $41$ $40$ $40$ $1$ $0$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $40$ $0$ $1$ $0$
41.20.2.20a $41$ $40$ $20$ $2$ $20$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^2 + 41 d_{0}$ $40$ $0$ $1$ $0$
41.10.4.30a $41$ $40$ $10$ $4$ $30$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^4 + 41 d_{0}$ $40$ $0$ $1$ $0$
41.8.5.32a $41$ $40$ $8$ $5$ $32$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^5 + 41 d_{0}$ $40$ $0$ $1$ $0$
41.5.8.35a $41$ $40$ $5$ $8$ $35$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^8 + 41 d_{0}$ $40$ $0$ $1$ $0$
41.4.10.36a $41$ $40$ $4$ $10$ $36$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^{10} + 41 d_{0}$ $40$ $0$ $1$ $0$
41.2.20.38a $41$ $40$ $2$ $20$ $38$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^{20} + 41 d_{0}$ $40$ $0$ $1$ $0$
41.1.40.39a $41$ $40$ $1$ $40$ $39$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^{40} + 41 d_{0}$ $40$ $0$ $1$ $0$
  displayed columns for results