Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
3.36.1.0a |
$3$ |
$36$ |
$36$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$36$ |
$0$ |
$1$ |
$1/36$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
3.18.2.18a |
$3$ |
$36$ |
$18$ |
$2$ |
$18$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + 3 d_{0}$ |
$36$ |
$0$ |
$1$ |
$1/18$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
3.12.3.36a |
$3$ |
$36$ |
$12$ |
$3$ |
$36$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{1}{2})$ |
$x^3 + 3 a_{1} x + 3$ |
$12$ |
$0$ |
$531440$ |
$132860/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.12.3.48a |
$3$ |
$36$ |
$12$ |
$3$ |
$48$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(1)$ |
$x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ |
$36$ |
$0$ |
$531440$ |
$132860/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.12.3.60a |
$3$ |
$36$ |
$12$ |
$3$ |
$60$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(\frac{3}{2})$ |
$x^3 + 9 b_{4} x + 3$ |
$12$ |
$0$ |
$531441$ |
$177147/4$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.9.4.27a |
$3$ |
$36$ |
$9$ |
$4$ |
$27$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^4 + 3 d_{0}$ |
$18$ |
$0$ |
$1$ |
$1/9$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
3.6.6.36a |
$3$ |
$36$ |
$6$ |
$6$ |
$36$ |
$[\frac{5}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{6}\rangle$ |
$(\frac{1}{2})$ |
$x^6 + 3 a_{1} x + 3 d_{0}$ |
$12$ |
$0$ |
$728$ |
$364/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.6.6.42a |
$3$ |
$36$ |
$6$ |
$6$ |
$42$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(1)$ |
$x^6 + 3 c_{3} x^3 + 3 a_{2} x^2 + 3 d_{0}$ |
$36$ |
$0$ |
$728$ |
$364/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.6.6.54a |
$3$ |
$36$ |
$6$ |
$6$ |
$54$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(2)$ |
$x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3 d_{0} + 9 c_{6}$ |
$36$ |
$0$ |
$530712$ |
$88452$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.6.6.60a |
$3$ |
$36$ |
$6$ |
$6$ |
$60$ |
$[\frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle\frac{5}{6}\rangle$ |
$(\frac{5}{2})$ |
$x^6 + 3 a_{5} x^5 + 9 b_{7} x + 3 d_{0}$ |
$12$ |
$0$ |
$530712$ |
$88452$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.6.6.66a |
$3$ |
$36$ |
$6$ |
$6$ |
$66$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(3)$ |
$x^6 + 9 c_{9} x^3 + 9 b_{8} x^2 + 9 b_{7} x + 3 d_{0}$ |
$36$ |
$0$ |
$531441$ |
$177147/2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.36a |
$3$ |
$36$ |
$4$ |
$9$ |
$36$ |
$[\frac{9}{8}, \frac{9}{8}]$ |
$[\frac{1}{8}, \frac{1}{8}]$ |
$\langle\frac{1}{12}, \frac{1}{9}\rangle$ |
$(\frac{1}{8}, \frac{1}{8})$ |
$x^9 + 3 a_{1} x + 3$ |
$4$ |
$0$ |
$80$ |
$20$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.40a |
$3$ |
$36$ |
$4$ |
$9$ |
$40$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$[\frac{1}{4}, \frac{1}{4}]$ |
$\langle\frac{1}{6}, \frac{2}{9}\rangle$ |
$(\frac{1}{4}, \frac{1}{4})$ |
$x^9 + 3 a_{2} x^2 + 3$ |
$4$ |
$0$ |
$80$ |
$20$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.48a |
$3$ |
$36$ |
$4$ |
$9$ |
$48$ |
$[\frac{3}{2}, \frac{3}{2}]$ |
$[\frac{1}{2}, \frac{1}{2}]$ |
$\langle\frac{1}{3}, \frac{4}{9}\rangle$ |
$(\frac{1}{2}, \frac{1}{2})$ |
$x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ |
$4$ |
$0$ |
$6480$ |
$1620$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.52a |
$3$ |
$36$ |
$4$ |
$9$ |
$52$ |
$[\frac{13}{8}, \frac{13}{8}]$ |
$[\frac{5}{8}, \frac{5}{8}]$ |
$\langle\frac{5}{12}, \frac{5}{9}\rangle$ |
$(\frac{5}{8}, \frac{5}{8})$ |
$x^9 + 3 a_{5} x^5 + 3$ |
$4$ |
$0$ |
$80$ |
$20$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.52b |
$3$ |
$36$ |
$4$ |
$9$ |
$52$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$[\frac{1}{2}, \frac{2}{3}]$ |
$\langle\frac{1}{3}, \frac{5}{9}\rangle$ |
$(\frac{1}{2}, 1)$ |
$x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ |
$12$ |
$0$ |
$6400$ |
$1600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.60a |
$3$ |
$36$ |
$4$ |
$9$ |
$60$ |
$[\frac{15}{8}, \frac{15}{8}]$ |
$[\frac{7}{8}, \frac{7}{8}]$ |
$\langle\frac{7}{12}, \frac{7}{9}\rangle$ |
$(\frac{7}{8}, \frac{7}{8})$ |
$x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ |
$4$ |
$0$ |
$6480$ |
$1620$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.60b |
$3$ |
$36$ |
$4$ |
$9$ |
$60$ |
$[\frac{3}{2}, 2]$ |
$[\frac{1}{2}, 1]$ |
$\langle\frac{1}{3}, \frac{7}{9}\rangle$ |
$(\frac{1}{2}, 2)$ |
$x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ |
$12$ |
$0$ |
$518400$ |
$129600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.64a |
$3$ |
$36$ |
$4$ |
$9$ |
$64$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{2}{3}, \frac{8}{9}\rangle$ |
$(1, 1)$ |
$x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ |
$36$ |
$0$ |
$6480$ |
$1620$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.64b |
$3$ |
$36$ |
$4$ |
$9$ |
$64$ |
$[\frac{3}{2}, \frac{13}{6}]$ |
$[\frac{1}{2}, \frac{7}{6}]$ |
$\langle\frac{1}{3}, \frac{8}{9}\rangle$ |
$(\frac{1}{2}, \frac{5}{2})$ |
$x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ |
$4$ |
$0$ |
$518400$ |
$129600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.72a |
$3$ |
$36$ |
$4$ |
$9$ |
$72$ |
$[\frac{9}{4}, \frac{9}{4}]$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$\langle\frac{5}{6}, \frac{10}{9}\rangle$ |
$(\frac{5}{4}, \frac{5}{4})$ |
$x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ |
$4$ |
$0$ |
$6480$ |
$1620$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.72b |
$3$ |
$36$ |
$4$ |
$9$ |
$72$ |
$[\frac{3}{2}, \frac{5}{2}]$ |
$[\frac{1}{2}, \frac{3}{2}]$ |
$\langle\frac{1}{3}, \frac{10}{9}\rangle$ |
$(\frac{1}{2}, \frac{7}{2})$ |
$x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ |
$4$ |
$0$ |
$41990400$ |
$10497600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.72c |
$3$ |
$36$ |
$4$ |
$9$ |
$72$ |
$[2, \frac{7}{3}]$ |
$[1, \frac{4}{3}]$ |
$\langle\frac{2}{3}, \frac{10}{9}\rangle$ |
$(1, 2)$ |
$x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ |
$36$ |
$0$ |
$518400$ |
$129600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.76a |
$3$ |
$36$ |
$4$ |
$9$ |
$76$ |
$[\frac{19}{8}, \frac{19}{8}]$ |
$[\frac{11}{8}, \frac{11}{8}]$ |
$\langle\frac{11}{12}, \frac{11}{9}\rangle$ |
$(\frac{11}{8}, \frac{11}{8})$ |
$x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ |
$4$ |
$0$ |
$6480$ |
$1620$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.4.9.76b |
$3$ |
$36$ |
$4$ |
$9$ |
$76$ |
$[\frac{3}{2}, \frac{8}{3}]$ |
$[\frac{1}{2}, \frac{5}{3}]$ |
$\langle\frac{1}{3}, \frac{11}{9}\rangle$ |
$(\frac{1}{2}, 4)$ |
$x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ |
$12$ |
$0$ |
$41990400$ |
$10497600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.76c |
$3$ |
$36$ |
$4$ |
$9$ |
$76$ |
$[2, \frac{5}{2}]$ |
$[1, \frac{3}{2}]$ |
$\langle\frac{2}{3}, \frac{11}{9}\rangle$ |
$(1, \frac{5}{2})$ |
$x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ |
$12$ |
$0$ |
$518400$ |
$129600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.80a |
$3$ |
$36$ |
$4$ |
$9$ |
$80$ |
$[\frac{3}{2}, \frac{17}{6}]$ |
$[\frac{1}{2}, \frac{11}{6}]$ |
$\langle\frac{1}{3}, \frac{4}{3}\rangle$ |
$(\frac{1}{2}, \frac{9}{2})$ |
$x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ |
$4$ |
$0$ |
$42515280$ |
$10628820$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.84a |
$3$ |
$36$ |
$4$ |
$9$ |
$84$ |
$[2, \frac{17}{6}]$ |
$[1, \frac{11}{6}]$ |
$\langle\frac{2}{3}, \frac{13}{9}\rangle$ |
$(1, \frac{7}{2})$ |
$x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ |
$12$ |
$0$ |
$41990400$ |
$10497600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.84b |
$3$ |
$36$ |
$4$ |
$9$ |
$84$ |
$[\frac{5}{2}, \frac{8}{3}]$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$\langle1, \frac{13}{9}\rangle$ |
$(\frac{3}{2}, 2)$ |
$x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ |
$12$ |
$0$ |
$524880$ |
$131220$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.88a |
$3$ |
$36$ |
$4$ |
$9$ |
$88$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{2}{3}, \frac{14}{9}\rangle$ |
$(1, 4)$ |
$x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ |
$36$ |
$0$ |
$41990400$ |
$10497600$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.88b |
$3$ |
$36$ |
$4$ |
$9$ |
$88$ |
$[\frac{5}{2}, \frac{17}{6}]$ |
$[\frac{3}{2}, \frac{11}{6}]$ |
$\langle1, \frac{14}{9}\rangle$ |
$(\frac{3}{2}, \frac{5}{2})$ |
$x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ |
$4$ |
$0$ |
$524880$ |
$131220$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.92a |
$3$ |
$36$ |
$4$ |
$9$ |
$92$ |
$[2, \frac{19}{6}]$ |
$[1, \frac{13}{6}]$ |
$\langle\frac{2}{3}, \frac{5}{3}\rangle$ |
$(1, \frac{9}{2})$ |
$x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ |
$12$ |
$0$ |
$42515280$ |
$10628820$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.96a |
$3$ |
$36$ |
$4$ |
$9$ |
$96$ |
$[\frac{5}{2}, \frac{19}{6}]$ |
$[\frac{3}{2}, \frac{13}{6}]$ |
$\langle1, \frac{16}{9}\rangle$ |
$(\frac{3}{2}, \frac{7}{2})$ |
$x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ |
$4$ |
$0$ |
$42515280$ |
$10628820$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.100a |
$3$ |
$36$ |
$4$ |
$9$ |
$100$ |
$[\frac{5}{2}, \frac{10}{3}]$ |
$[\frac{3}{2}, \frac{7}{3}]$ |
$\langle1, \frac{17}{9}\rangle$ |
$(\frac{3}{2}, 4)$ |
$x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ |
$12$ |
$0$ |
$42515280$ |
$10628820$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.4.9.104a |
$3$ |
$36$ |
$4$ |
$9$ |
$104$ |
$[\frac{5}{2}, \frac{7}{2}]$ |
$[\frac{3}{2}, \frac{5}{2}]$ |
$\langle1, 2\rangle$ |
$(\frac{3}{2}, \frac{9}{2})$ |
$x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ |
$4$ |
$0$ |
$43046721$ |
$43046721/4$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.3.12.36a |
$3$ |
$36$ |
$3$ |
$12$ |
$36$ |
$[\frac{9}{8}]$ |
$[\frac{1}{8}]$ |
$\langle\frac{1}{12}\rangle$ |
$(\frac{1}{2})$ |
$x^{12} + 3 a_{1} x + 3 d_{0}$ |
$6$ |
$0$ |
$26$ |
$26/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.39a |
$3$ |
$36$ |
$3$ |
$12$ |
$39$ |
$[\frac{5}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{6}\rangle$ |
$(1)$ |
$x^{12} + 3 c_{3} x^3 + 3 a_{2} x^2 + 3 d_{0}$ |
$18$ |
$0$ |
$26$ |
$26/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.45a |
$3$ |
$36$ |
$3$ |
$12$ |
$45$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(2)$ |
$x^{12} + 3 c_{6} x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3 d_{0}$ |
$18$ |
$0$ |
$702$ |
$234$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.48a |
$3$ |
$36$ |
$3$ |
$12$ |
$48$ |
$[\frac{13}{8}]$ |
$[\frac{5}{8}]$ |
$\langle\frac{5}{12}\rangle$ |
$(\frac{5}{2})$ |
$x^{12} + 3 b_{7} x^7 + 3 a_{5} x^5 + 3 d_{0}$ |
$6$ |
$0$ |
$702$ |
$234$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.54a |
$3$ |
$36$ |
$3$ |
$12$ |
$54$ |
$[\frac{15}{8}]$ |
$[\frac{7}{8}]$ |
$\langle\frac{7}{12}\rangle$ |
$(\frac{7}{2})$ |
$x^{12} + 3 b_{10} x^{10} + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 d_{0}$ |
$6$ |
$0$ |
$18954$ |
$6318$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.57a |
$3$ |
$36$ |
$3$ |
$12$ |
$57$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(4)$ |
$x^{12} + 3 b_{11} x^{11} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 d_{0} + 9 c_{12}$ |
$18$ |
$0$ |
$18954$ |
$6318$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.63a |
$3$ |
$36$ |
$3$ |
$12$ |
$63$ |
$[\frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle\frac{5}{6}\rangle$ |
$(5)$ |
$x^{12} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 9 c_{15} x^3 + 9 b_{14} x^2 + 9 b_{13} x + 3 d_{0}$ |
$18$ |
$0$ |
$511758$ |
$170586$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.66a |
$3$ |
$36$ |
$3$ |
$12$ |
$66$ |
$[\frac{19}{8}]$ |
$[\frac{11}{8}]$ |
$\langle\frac{11}{12}\rangle$ |
$(\frac{11}{2})$ |
$x^{12} + 3 a_{11} x^{11} + 9 b_{16} x^4 + 9 b_{14} x^2 + 9 b_{13} x + 3 d_{0}$ |
$6$ |
$0$ |
$511758$ |
$170586$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.3.12.69a |
$3$ |
$36$ |
$3$ |
$12$ |
$69$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(6)$ |
$x^{12} + 9 c_{18} x^6 + 9 b_{17} x^5 + 9 b_{16} x^4 + 9 b_{14} x^2 + 9 b_{13} x + 3 d_{0}$ |
$18$ |
$0$ |
$531441$ |
$177147$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.2.18.36a |
$3$ |
$36$ |
$2$ |
$18$ |
$36$ |
$[\frac{17}{16}, \frac{17}{16}]$ |
$[\frac{1}{16}, \frac{1}{16}]$ |
$\langle\frac{1}{24}, \frac{1}{18}\rangle$ |
$(\frac{1}{8}, \frac{1}{8})$ |
$x^{18} + 3 a_{1} x + 3 d_{0}$ |
$4$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.2.18.38a |
$3$ |
$36$ |
$2$ |
$18$ |
$38$ |
$[\frac{9}{8}, \frac{9}{8}]$ |
$[\frac{1}{8}, \frac{1}{8}]$ |
$\langle\frac{1}{12}, \frac{1}{9}\rangle$ |
$(\frac{1}{4}, \frac{1}{4})$ |
$x^{18} + 3 a_{2} x^2 + 3 d_{0}$ |
$4$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.2.18.42a |
$3$ |
$36$ |
$2$ |
$18$ |
$42$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$[\frac{1}{4}, \frac{1}{4}]$ |
$\langle\frac{1}{6}, \frac{2}{9}\rangle$ |
$(\frac{1}{2}, \frac{1}{2})$ |
$x^{18} + 3 a_{4} x^4 + 3 b_{3} x^3 + 3 d_{0}$ |
$4$ |
$0$ |
$72$ |
$36$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.2.18.44a |
$3$ |
$36$ |
$2$ |
$18$ |
$44$ |
$[\frac{21}{16}, \frac{21}{16}]$ |
$[\frac{5}{16}, \frac{5}{16}]$ |
$\langle\frac{5}{24}, \frac{5}{18}\rangle$ |
$(\frac{5}{8}, \frac{5}{8})$ |
$x^{18} + 3 a_{5} x^5 + 3 d_{0}$ |
$4$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
3.2.18.44b |
$3$ |
$36$ |
$2$ |
$18$ |
$44$ |
$[\frac{5}{4}, \frac{4}{3}]$ |
$[\frac{1}{4}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{5}{18}\rangle$ |
$(\frac{1}{2}, 1)$ |
$x^{18} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3 d_{0}$ |
$12$ |
$0$ |
$64$ |
$32$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
3.2.18.48a |
$3$ |
$36$ |
$2$ |
$18$ |
$48$ |
$[\frac{23}{16}, \frac{23}{16}]$ |
$[\frac{7}{16}, \frac{7}{16}]$ |
$\langle\frac{7}{24}, \frac{7}{18}\rangle$ |
$(\frac{7}{8}, \frac{7}{8})$ |
$x^{18} + 3 a_{7} x^7 + 3 b_{6} x^6 + 3 d_{0}$ |
$4$ |
$0$ |
$72$ |
$36$ |
$0$ |
$0\%$ |
$1$ |
$0$ |