Learn more

Refine search


Results (1-50 of 324 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass Num. Packets
3.36.1.0a $3$ $36$ $36$ $1$ $0$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $36$ $0$ $1$ $0$
3.18.2.18a $3$ $36$ $18$ $2$ $18$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^2 + 3 d_{0}$ $36$ $0$ $1$ $0$
3.12.3.36a $3$ $36$ $12$ $3$ $36$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(\frac{1}{2})$ $x^3 + 3 a_{1} x + 3$ $12$ $0$ $531440$ $0$
3.12.3.48a $3$ $36$ $12$ $3$ $48$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(1)$ $x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ $36$ $0$ $531440$ $0$
3.12.3.60a $3$ $36$ $12$ $3$ $60$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(\frac{3}{2})$ $x^3 + 9 b_{4} x + 3$ $12$ $0$ $531441$ $0$
3.9.4.27a $3$ $36$ $9$ $4$ $27$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^4 + 3 d_{0}$ $18$ $0$ $1$ $0$
3.6.6.36a $3$ $36$ $6$ $6$ $36$ $[\frac{5}{4}]$ $[\frac{1}{4}]$ $\langle\frac{1}{6}\rangle$ $(\frac{1}{2})$ $x^6 + 3 a_{1} x + 3 d_{0}$ $12$ $0$ $728$ $0$
3.6.6.42a $3$ $36$ $6$ $6$ $42$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(1)$ $x^6 + 3 c_{3} x^3 + 3 a_{2} x^2 + 3 d_{0}$ $36$ $0$ $728$ $0$
3.6.6.54a $3$ $36$ $6$ $6$ $54$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(2)$ $x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3 d_{0} + 9 c_{6}$ $36$ $0$ $530712$ $0$
3.6.6.60a $3$ $36$ $6$ $6$ $60$ $[\frac{9}{4}]$ $[\frac{5}{4}]$ $\langle\frac{5}{6}\rangle$ $(\frac{5}{2})$ $x^6 + 3 a_{5} x^5 + 9 b_{7} x + 3 d_{0}$ $12$ $0$ $530712$ $0$
3.6.6.66a $3$ $36$ $6$ $6$ $66$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(3)$ $x^6 + 9 c_{9} x^3 + 9 b_{8} x^2 + 9 b_{7} x + 3 d_{0}$ $36$ $0$ $531441$ $0$
3.4.9.36a $3$ $36$ $4$ $9$ $36$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^9 + 3 a_{1} x + 3$ $4$ $0$ $80$ $0$
3.4.9.40a $3$ $36$ $4$ $9$ $40$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^9 + 3 a_{2} x^2 + 3$ $4$ $0$ $80$ $0$
3.4.9.48a $3$ $36$ $4$ $9$ $48$ $[\frac{3}{2}, \frac{3}{2}]$ $[\frac{1}{2}, \frac{1}{2}]$ $\langle\frac{1}{3}, \frac{4}{9}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ $4$ $0$ $6480$ $0$
3.4.9.52a $3$ $36$ $4$ $9$ $52$ $[\frac{13}{8}, \frac{13}{8}]$ $[\frac{5}{8}, \frac{5}{8}]$ $\langle\frac{5}{12}, \frac{5}{9}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^9 + 3 a_{5} x^5 + 3$ $4$ $0$ $80$ $0$
3.4.9.52b $3$ $36$ $4$ $9$ $52$ $[\frac{3}{2}, \frac{5}{3}]$ $[\frac{1}{2}, \frac{2}{3}]$ $\langle\frac{1}{3}, \frac{5}{9}\rangle$ $(\frac{1}{2}, 1)$ $x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ $12$ $0$ $6400$ $0$
3.4.9.60a $3$ $36$ $4$ $9$ $60$ $[\frac{15}{8}, \frac{15}{8}]$ $[\frac{7}{8}, \frac{7}{8}]$ $\langle\frac{7}{12}, \frac{7}{9}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ $4$ $0$ $6480$ $0$
3.4.9.60b $3$ $36$ $4$ $9$ $60$ $[\frac{3}{2}, 2]$ $[\frac{1}{2}, 1]$ $\langle\frac{1}{3}, \frac{7}{9}\rangle$ $(\frac{1}{2}, 2)$ $x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ $12$ $0$ $518400$ $0$
3.4.9.64a $3$ $36$ $4$ $9$ $64$ $[2, 2]$ $[1, 1]$ $\langle\frac{2}{3}, \frac{8}{9}\rangle$ $(1, 1)$ $x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ $36$ $0$ $6480$ $0$
3.4.9.64b $3$ $36$ $4$ $9$ $64$ $[\frac{3}{2}, \frac{13}{6}]$ $[\frac{1}{2}, \frac{7}{6}]$ $\langle\frac{1}{3}, \frac{8}{9}\rangle$ $(\frac{1}{2}, \frac{5}{2})$ $x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ $4$ $0$ $518400$ $0$
3.4.9.72a $3$ $36$ $4$ $9$ $72$ $[\frac{9}{4}, \frac{9}{4}]$ $[\frac{5}{4}, \frac{5}{4}]$ $\langle\frac{5}{6}, \frac{10}{9}\rangle$ $(\frac{5}{4}, \frac{5}{4})$ $x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $4$ $0$ $6480$ $0$
3.4.9.72b $3$ $36$ $4$ $9$ $72$ $[\frac{3}{2}, \frac{5}{2}]$ $[\frac{1}{2}, \frac{3}{2}]$ $\langle\frac{1}{3}, \frac{10}{9}\rangle$ $(\frac{1}{2}, \frac{7}{2})$ $x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $4$ $0$ $41990400$ $0$
3.4.9.72c $3$ $36$ $4$ $9$ $72$ $[2, \frac{7}{3}]$ $[1, \frac{4}{3}]$ $\langle\frac{2}{3}, \frac{10}{9}\rangle$ $(1, 2)$ $x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ $36$ $0$ $518400$ $0$
3.4.9.76a $3$ $36$ $4$ $9$ $76$ $[\frac{19}{8}, \frac{19}{8}]$ $[\frac{11}{8}, \frac{11}{8}]$ $\langle\frac{11}{12}, \frac{11}{9}\rangle$ $(\frac{11}{8}, \frac{11}{8})$ $x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ $4$ $0$ $6480$ $0$
3.4.9.76b $3$ $36$ $4$ $9$ $76$ $[\frac{3}{2}, \frac{8}{3}]$ $[\frac{1}{2}, \frac{5}{3}]$ $\langle\frac{1}{3}, \frac{11}{9}\rangle$ $(\frac{1}{2}, 4)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ $12$ $0$ $41990400$ $0$
3.4.9.76c $3$ $36$ $4$ $9$ $76$ $[2, \frac{5}{2}]$ $[1, \frac{3}{2}]$ $\langle\frac{2}{3}, \frac{11}{9}\rangle$ $(1, \frac{5}{2})$ $x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ $12$ $0$ $518400$ $0$
3.4.9.80a $3$ $36$ $4$ $9$ $80$ $[\frac{3}{2}, \frac{17}{6}]$ $[\frac{1}{2}, \frac{11}{6}]$ $\langle\frac{1}{3}, \frac{4}{3}\rangle$ $(\frac{1}{2}, \frac{9}{2})$ $x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ $4$ $0$ $42515280$ $0$
3.4.9.84a $3$ $36$ $4$ $9$ $84$ $[2, \frac{17}{6}]$ $[1, \frac{11}{6}]$ $\langle\frac{2}{3}, \frac{13}{9}\rangle$ $(1, \frac{7}{2})$ $x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ $12$ $0$ $41990400$ $0$
3.4.9.84b $3$ $36$ $4$ $9$ $84$ $[\frac{5}{2}, \frac{8}{3}]$ $[\frac{3}{2}, \frac{5}{3}]$ $\langle1, \frac{13}{9}\rangle$ $(\frac{3}{2}, 2)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ $12$ $0$ $524880$ $0$
3.4.9.88a $3$ $36$ $4$ $9$ $88$ $[2, 3]$ $[1, 2]$ $\langle\frac{2}{3}, \frac{14}{9}\rangle$ $(1, 4)$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ $36$ $0$ $41990400$ $0$
3.4.9.88b $3$ $36$ $4$ $9$ $88$ $[\frac{5}{2}, \frac{17}{6}]$ $[\frac{3}{2}, \frac{11}{6}]$ $\langle1, \frac{14}{9}\rangle$ $(\frac{3}{2}, \frac{5}{2})$ $x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ $4$ $0$ $524880$ $0$
3.4.9.92a $3$ $36$ $4$ $9$ $92$ $[2, \frac{19}{6}]$ $[1, \frac{13}{6}]$ $\langle\frac{2}{3}, \frac{5}{3}\rangle$ $(1, \frac{9}{2})$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ $12$ $0$ $42515280$ $0$
3.4.9.96a $3$ $36$ $4$ $9$ $96$ $[\frac{5}{2}, \frac{19}{6}]$ $[\frac{3}{2}, \frac{13}{6}]$ $\langle1, \frac{16}{9}\rangle$ $(\frac{3}{2}, \frac{7}{2})$ $x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ $4$ $0$ $42515280$ $0$
3.4.9.100a $3$ $36$ $4$ $9$ $100$ $[\frac{5}{2}, \frac{10}{3}]$ $[\frac{3}{2}, \frac{7}{3}]$ $\langle1, \frac{17}{9}\rangle$ $(\frac{3}{2}, 4)$ $x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $12$ $0$ $42515280$ $0$
3.4.9.104a $3$ $36$ $4$ $9$ $104$ $[\frac{5}{2}, \frac{7}{2}]$ $[\frac{3}{2}, \frac{5}{2}]$ $\langle1, 2\rangle$ $(\frac{3}{2}, \frac{9}{2})$ $x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $4$ $0$ $43046721$ $0$
3.3.12.36a $3$ $36$ $3$ $12$ $36$ $[\frac{9}{8}]$ $[\frac{1}{8}]$ $\langle\frac{1}{12}\rangle$ $(\frac{1}{2})$ $x^{12} + 3 a_{1} x + 3 d_{0}$ $6$ $0$ $26$ $0$
3.3.12.39a $3$ $36$ $3$ $12$ $39$ $[\frac{5}{4}]$ $[\frac{1}{4}]$ $\langle\frac{1}{6}\rangle$ $(1)$ $x^{12} + 3 c_{3} x^3 + 3 a_{2} x^2 + 3 d_{0}$ $18$ $0$ $26$ $0$
3.3.12.45a $3$ $36$ $3$ $12$ $45$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(2)$ $x^{12} + 3 c_{6} x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3 d_{0}$ $18$ $0$ $702$ $0$
3.3.12.48a $3$ $36$ $3$ $12$ $48$ $[\frac{13}{8}]$ $[\frac{5}{8}]$ $\langle\frac{5}{12}\rangle$ $(\frac{5}{2})$ $x^{12} + 3 b_{7} x^7 + 3 a_{5} x^5 + 3 d_{0}$ $6$ $0$ $702$ $0$
3.3.12.54a $3$ $36$ $3$ $12$ $54$ $[\frac{15}{8}]$ $[\frac{7}{8}]$ $\langle\frac{7}{12}\rangle$ $(\frac{7}{2})$ $x^{12} + 3 b_{10} x^{10} + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 d_{0}$ $6$ $0$ $18954$ $0$
3.3.12.57a $3$ $36$ $3$ $12$ $57$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(4)$ $x^{12} + 3 b_{11} x^{11} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 d_{0} + 9 c_{12}$ $18$ $0$ $18954$ $0$
3.3.12.63a $3$ $36$ $3$ $12$ $63$ $[\frac{9}{4}]$ $[\frac{5}{4}]$ $\langle\frac{5}{6}\rangle$ $(5)$ $x^{12} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 9 c_{15} x^3 + 9 b_{14} x^2 + 9 b_{13} x + 3 d_{0}$ $18$ $0$ $511758$ $0$
3.3.12.66a $3$ $36$ $3$ $12$ $66$ $[\frac{19}{8}]$ $[\frac{11}{8}]$ $\langle\frac{11}{12}\rangle$ $(\frac{11}{2})$ $x^{12} + 3 a_{11} x^{11} + 9 b_{16} x^4 + 9 b_{14} x^2 + 9 b_{13} x + 3 d_{0}$ $6$ $0$ $511758$ $0$
3.3.12.69a $3$ $36$ $3$ $12$ $69$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(6)$ $x^{12} + 9 c_{18} x^6 + 9 b_{17} x^5 + 9 b_{16} x^4 + 9 b_{14} x^2 + 9 b_{13} x + 3 d_{0}$ $18$ $0$ $531441$ $0$
3.2.18.36a $3$ $36$ $2$ $18$ $36$ $[\frac{17}{16}, \frac{17}{16}]$ $[\frac{1}{16}, \frac{1}{16}]$ $\langle\frac{1}{24}, \frac{1}{18}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^{18} + 3 a_{1} x + 3 d_{0}$ $4$ $0$ $8$ $0$
3.2.18.38a $3$ $36$ $2$ $18$ $38$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^{18} + 3 a_{2} x^2 + 3 d_{0}$ $4$ $0$ $8$ $0$
3.2.18.42a $3$ $36$ $2$ $18$ $42$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^{18} + 3 a_{4} x^4 + 3 b_{3} x^3 + 3 d_{0}$ $4$ $0$ $72$ $0$
3.2.18.44a $3$ $36$ $2$ $18$ $44$ $[\frac{21}{16}, \frac{21}{16}]$ $[\frac{5}{16}, \frac{5}{16}]$ $\langle\frac{5}{24}, \frac{5}{18}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^{18} + 3 a_{5} x^5 + 3 d_{0}$ $4$ $0$ $8$ $0$
3.2.18.44b $3$ $36$ $2$ $18$ $44$ $[\frac{5}{4}, \frac{4}{3}]$ $[\frac{1}{4}, \frac{1}{3}]$ $\langle\frac{1}{6}, \frac{5}{18}\rangle$ $(\frac{1}{2}, 1)$ $x^{18} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3 d_{0}$ $12$ $0$ $64$ $0$
3.2.18.48a $3$ $36$ $2$ $18$ $48$ $[\frac{23}{16}, \frac{23}{16}]$ $[\frac{7}{16}, \frac{7}{16}]$ $\langle\frac{7}{24}, \frac{7}{18}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^{18} + 3 a_{7} x^7 + 3 b_{6} x^6 + 3 d_{0}$ $4$ $0$ $72$ $0$
Next   displayed columns for results