Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
2.36.1.0a |
$2$ |
$36$ |
$36$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$36$ |
$0$ |
$1$ |
$1/36$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
2.18.2.36a |
$2$ |
$36$ |
$18$ |
$2$ |
$36$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$36$ |
$0$ |
$262143$ |
$29127/2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.18.2.54a |
$2$ |
$36$ |
$18$ |
$2$ |
$54$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$36$ |
$0$ |
$262144$ |
$131072/9$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.12.3.24a |
$2$ |
$36$ |
$12$ |
$3$ |
$24$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^3 + 2 d_{0}$ |
$36$ |
$0$ |
$1$ |
$1/12$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
2.9.4.36a |
$2$ |
$36$ |
$9$ |
$4$ |
$36$ |
$[\frac{4}{3}, \frac{4}{3}]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + 2 a_{1} x + 2$ |
$9$ |
$0$ |
$511$ |
$511/9$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.9.4.54a |
$2$ |
$36$ |
$9$ |
$4$ |
$54$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 4 c_{4} + 2$ |
$36$ |
$0$ |
$261632$ |
$261632/9$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.9.4.72a |
$2$ |
$36$ |
$9$ |
$4$ |
$72$ |
$[\frac{8}{3}, \frac{8}{3}]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + 4 b_{6} x^2 + 4 a_{5} x + 2$ |
$9$ |
$0$ |
$261632$ |
$261632/9$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.9.4.72b |
$2$ |
$36$ |
$9$ |
$4$ |
$72$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + 4 b_{7} x^3 + 2 a_{2} x^2 + 4 a_{5} x + 4 c_{4} + 8 c_{8} + 2$ |
$36$ |
$0$ |
$133693952$ |
$133693952/9$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.9.4.81a |
$2$ |
$36$ |
$9$ |
$4$ |
$81$ |
$[2, \frac{7}{2}]$ |
$[1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}\rangle$ |
$(1, 4)$ |
$x^4 + 4 b_{7} x^3 + (2 a_{2} + 8 c_{10}) x^2 + 8 b_{9} x + 4 c_{4} + 2$ |
$36$ |
$0$ |
$133955584$ |
$133955584/9$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.9.4.90a |
$2$ |
$36$ |
$9$ |
$4$ |
$90$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$36$ |
$0$ |
$133955584$ |
$133955584/9$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.9.4.99a |
$2$ |
$36$ |
$9$ |
$4$ |
$99$ |
$[3, 4]$ |
$[2, 3]$ |
$\langle1, 2\rangle$ |
$(2, 4)$ |
$x^4 + 8 b_{11} x^3 + 4 b_{6} x^2 + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$ |
$36$ |
$0$ |
$134217728$ |
$134217728/9$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.6.6.36a |
$2$ |
$36$ |
$6$ |
$6$ |
$36$ |
$[\frac{4}{3}]$ |
$[\frac{1}{3}]$ |
$\langle\frac{1}{6}\rangle$ |
$(1)$ |
$x^6 + 2 c_{2} x^2 + 2 a_{1} x + 2 d_{0}$ |
$36$ |
$0$ |
$63$ |
$21/2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.6.6.48a |
$2$ |
$36$ |
$6$ |
$6$ |
$48$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(3)$ |
$x^6 + 2 b_{5} x^5 + 2 a_{3} x^3 + 2 d_{0} + 4 c_{6}$ |
$36$ |
$0$ |
$4032$ |
$672$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.6.6.60a |
$2$ |
$36$ |
$6$ |
$6$ |
$60$ |
$[\frac{8}{3}]$ |
$[\frac{5}{3}]$ |
$\langle\frac{5}{6}\rangle$ |
$(5)$ |
$x^6 + 2 a_{5} x^5 + 4 c_{10} x^4 + 4 b_{9} x^3 + 4 b_{7} x + 2 d_{0}$ |
$36$ |
$0$ |
$258048$ |
$43008$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.6.6.66a |
$2$ |
$36$ |
$6$ |
$6$ |
$66$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(6)$ |
$x^6 + 4 b_{11} x^5 + 4 b_{9} x^3 + 4 b_{7} x + 2 d_{0} + 8 c_{12}$ |
$36$ |
$0$ |
$262144$ |
$131072/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.9.32a |
$2$ |
$36$ |
$4$ |
$9$ |
$32$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^9 + 2 d_{0}$ |
$12$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
2.3.12.36a |
$2$ |
$36$ |
$3$ |
$12$ |
$36$ |
$[\frac{10}{9}, \frac{10}{9}]$ |
$[\frac{1}{9}, \frac{1}{9}]$ |
$\langle\frac{1}{18}, \frac{1}{12}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^{12} + 2 a_{1} x + 2$ |
$3$ |
$0$ |
$7$ |
$7/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.42a |
$2$ |
$36$ |
$3$ |
$12$ |
$42$ |
$[\frac{4}{3}, \frac{4}{3}]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(1, 1)$ |
$x^{12} + 2 c_{4} x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 2$ |
$12$ |
$0$ |
$56$ |
$56/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.48a |
$2$ |
$36$ |
$3$ |
$12$ |
$48$ |
$[\frac{14}{9}, \frac{14}{9}]$ |
$[\frac{5}{9}, \frac{5}{9}]$ |
$\langle\frac{5}{18}, \frac{5}{12}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^{12} + 2 b_{6} x^6 + 2 a_{5} x^5 + 2$ |
$3$ |
$0$ |
$56$ |
$56/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.48b |
$2$ |
$36$ |
$3$ |
$12$ |
$48$ |
$[\frac{4}{3}, \frac{5}{3}]$ |
$[\frac{1}{3}, \frac{2}{3}]$ |
$\langle\frac{1}{6}, \frac{5}{12}\rangle$ |
$(1, 3)$ |
$x^{12} + 2 c_{8} x^8 + 2 b_{7} x^7 + 2 a_{5} x^5 + 2 c_{4} x^4 + 2 a_{2} x^2 + 2$ |
$12$ |
$0$ |
$392$ |
$392/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.54a |
$2$ |
$36$ |
$3$ |
$12$ |
$54$ |
$[\frac{16}{9}, \frac{16}{9}]$ |
$[\frac{7}{9}, \frac{7}{9}]$ |
$\langle\frac{7}{18}, \frac{7}{12}\rangle$ |
$(\frac{7}{3}, \frac{7}{3})$ |
$x^{12} + 2 b_{9} x^9 + 2 a_{7} x^7 + 2 b_{6} x^6 + 2$ |
$3$ |
$0$ |
$448$ |
$448/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.54b |
$2$ |
$36$ |
$3$ |
$12$ |
$54$ |
$[\frac{4}{3}, 2]$ |
$[\frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{7}{12}\rangle$ |
$(1, 5)$ |
$x^{12} + 2 b_{11} x^{11} + 2 b_{9} x^9 + 2 a_{7} x^7 + 2 c_{4} x^4 + 2 a_{2} x^2 + 4 c_{12} + 2$ |
$12$ |
$0$ |
$3136$ |
$3136/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.60a |
$2$ |
$36$ |
$3$ |
$12$ |
$60$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(3, 3)$ |
$x^{12} + 2 b_{11} x^{11} + 2 b_{10} x^{10} + 2 a_{9} x^9 + 2 b_{6} x^6 + 4 c_{12} + 2$ |
$12$ |
$0$ |
$3584$ |
$3584/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.60b |
$2$ |
$36$ |
$3$ |
$12$ |
$60$ |
$[\frac{4}{3}, \frac{7}{3}]$ |
$[\frac{1}{3}, \frac{4}{3}]$ |
$\langle\frac{1}{6}, \frac{3}{4}\rangle$ |
$(1, 7)$ |
$x^{12} + 2 b_{11} x^{11} + 2 a_{9} x^9 + (2 c_{4} + 4 c_{16}) x^4 + 4 b_{15} x^3 + 2 a_{2} x^2 + 4 b_{13} x + 2$ |
$12$ |
$0$ |
$25088$ |
$25088/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.66a |
$2$ |
$36$ |
$3$ |
$12$ |
$66$ |
$[\frac{20}{9}, \frac{20}{9}]$ |
$[\frac{11}{9}, \frac{11}{9}]$ |
$\langle\frac{11}{18}, \frac{11}{12}\rangle$ |
$(\frac{11}{3}, \frac{11}{3})$ |
$x^{12} + 2 a_{11} x^{11} + 2 b_{10} x^{10} + 4 b_{14} x^2 + 4 b_{13} x + 2$ |
$3$ |
$0$ |
$3584$ |
$3584/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.66b |
$2$ |
$36$ |
$3$ |
$12$ |
$66$ |
$[\frac{4}{3}, \frac{8}{3}]$ |
$[\frac{1}{3}, \frac{5}{3}]$ |
$\langle\frac{1}{6}, \frac{11}{12}\rangle$ |
$(1, 9)$ |
$x^{12} + 2 a_{11} x^{11} + 4 c_{20} x^8 + 4 b_{19} x^7 + 4 b_{17} x^5 + 2 c_{4} x^4 + 4 b_{15} x^3 + 2 a_{2} x^2 + 4 b_{13} x + 2$ |
$12$ |
$0$ |
$200704$ |
$200704/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.66c |
$2$ |
$36$ |
$3$ |
$12$ |
$66$ |
$[2, \frac{7}{3}]$ |
$[1, \frac{4}{3}]$ |
$\langle\frac{1}{2}, \frac{11}{12}\rangle$ |
$(3, 5)$ |
$x^{12} + 2 a_{11} x^{11} + 2 b_{10} x^{10} + 2 a_{6} x^6 + 4 c_{16} x^4 + 4 b_{15} x^3 + 4 b_{13} x + 4 c_{12} + 2$ |
$12$ |
$0$ |
$25088$ |
$25088/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.72a |
$2$ |
$36$ |
$3$ |
$12$ |
$72$ |
$[\frac{22}{9}, \frac{22}{9}]$ |
$[\frac{13}{9}, \frac{13}{9}]$ |
$\langle\frac{13}{18}, \frac{13}{12}\rangle$ |
$(\frac{13}{3}, \frac{13}{3})$ |
$x^{12} + 2 b_{10} x^{10} + 4 b_{17} x^5 + 4 b_{15} x^3 + 4 b_{14} x^2 + 4 a_{13} x + 2$ |
$3$ |
$0$ |
$28672$ |
$28672/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.72b |
$2$ |
$36$ |
$3$ |
$12$ |
$72$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3}, 2]$ |
$\langle\frac{1}{6}, \frac{13}{12}\rangle$ |
$(1, 11)$ |
$x^{12} + 4 b_{23} x^{11} + 4 b_{21} x^9 + 4 b_{19} x^7 + 4 b_{17} x^5 + 2 c_{4} x^4 + 4 b_{15} x^3 + 2 a_{2} x^2 + 4 a_{13} x + 8 c_{24} + 2$ |
$12$ |
$0$ |
$1605632$ |
$1605632/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.72c |
$2$ |
$36$ |
$3$ |
$12$ |
$72$ |
$[2, \frac{8}{3}]$ |
$[1, \frac{5}{3}]$ |
$\langle\frac{1}{2}, \frac{13}{12}\rangle$ |
$(3, 7)$ |
$x^{12} + 2 b_{10} x^{10} + 4 c_{20} x^8 + 4 b_{19} x^7 + 2 a_{6} x^6 + 4 b_{17} x^5 + 4 b_{15} x^3 + 4 a_{13} x + 4 c_{12} + 2$ |
$12$ |
$0$ |
$200704$ |
$200704/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.75a |
$2$ |
$36$ |
$3$ |
$12$ |
$75$ |
$[\frac{4}{3}, \frac{19}{6}]$ |
$[\frac{1}{3}, \frac{13}{6}]$ |
$\langle\frac{1}{6}, \frac{7}{6}\rangle$ |
$(1, 12)$ |
$x^{12} + 4 b_{23} x^{11} + 4 b_{21} x^9 + 4 b_{19} x^7 + 4 b_{17} x^5 + 2 c_{4} x^4 + 4 b_{15} x^3 + (2 a_{2} + 8 c_{26}) x^2 + 8 b_{25} x + 2$ |
$12$ |
$0$ |
$1835008$ |
$1835008/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.78a |
$2$ |
$36$ |
$3$ |
$12$ |
$78$ |
$[\frac{8}{3}, \frac{8}{3}]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(5, 5)$ |
$x^{12} + 2 b_{10} x^{10} + 4 c_{20} x^8 + 4 b_{19} x^7 + 4 b_{18} x^6 + 4 b_{17} x^5 + 4 a_{15} x^3 + 4 b_{14} x^2 + 2$ |
$12$ |
$0$ |
$229376$ |
$229376/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.78b |
$2$ |
$36$ |
$3$ |
$12$ |
$78$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(3, 9)$ |
$x^{12} + 4 b_{23} x^{11} + 2 b_{10} x^{10} + 4 b_{21} x^9 + 4 b_{19} x^7 + 2 a_{6} x^6 + 4 b_{17} x^5 + 4 a_{15} x^3 + 4 c_{12} + 8 c_{24} + 2$ |
$12$ |
$0$ |
$1605632$ |
$1605632/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.84a |
$2$ |
$36$ |
$3$ |
$12$ |
$84$ |
$[\frac{26}{9}, \frac{26}{9}]$ |
$[\frac{17}{9}, \frac{17}{9}]$ |
$\langle\frac{17}{18}, \frac{17}{12}\rangle$ |
$(\frac{17}{3}, \frac{17}{3})$ |
$x^{12} + 4 b_{22} x^{10} + 4 b_{21} x^9 + 4 b_{19} x^7 + 4 b_{18} x^6 + 4 a_{17} x^5 + 4 b_{14} x^2 + 2$ |
$3$ |
$0$ |
$229376$ |
$229376/3$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.3.12.84b |
$2$ |
$36$ |
$3$ |
$12$ |
$84$ |
$[2, \frac{10}{3}]$ |
$[1, \frac{7}{3}]$ |
$\langle\frac{1}{2}, \frac{17}{12}\rangle$ |
$(3, 11)$ |
$x^{12} + 4 b_{23} x^{11} + 2 b_{10} x^{10} + 4 b_{21} x^9 + 4 b_{19} x^7 + 2 a_{6} x^6 + 4 a_{17} x^5 + 8 c_{28} x^4 + 8 b_{27} x^3 + 8 b_{25} x + 4 c_{12} + 2$ |
$12$ |
$0$ |
$12845056$ |
$12845056/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.84c |
$2$ |
$36$ |
$3$ |
$12$ |
$84$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3}, 2]$ |
$\langle\frac{5}{6}, \frac{17}{12}\rangle$ |
$(5, 7)$ |
$x^{12} + 4 b_{23} x^{11} + 2 a_{10} x^{10} + 4 b_{21} x^9 + 4 c_{20} x^8 + 4 b_{19} x^7 + 4 b_{18} x^6 + 4 a_{17} x^5 + 4 b_{14} x^2 + 8 c_{24} + 2$ |
$12$ |
$0$ |
$1605632$ |
$1605632/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.87a |
$2$ |
$36$ |
$3$ |
$12$ |
$87$ |
$[2, \frac{7}{2}]$ |
$[1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}\rangle$ |
$(3, 12)$ |
$x^{12} + 4 b_{23} x^{11} + 2 b_{10} x^{10} + 4 b_{21} x^9 + 4 b_{19} x^7 + (2 a_{6} + 8 c_{30}) x^6 + 8 b_{29} x^5 + 8 b_{27} x^3 + 8 b_{25} x + 4 c_{12} + 2$ |
$12$ |
$0$ |
$14680064$ |
$14680064/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.90a |
$2$ |
$36$ |
$3$ |
$12$ |
$90$ |
$[\frac{8}{3}, \frac{10}{3}]$ |
$[\frac{5}{3}, \frac{7}{3}]$ |
$\langle\frac{5}{6}, \frac{19}{12}\rangle$ |
$(5, 9)$ |
$x^{12} + 4 b_{23} x^{11} + 2 a_{10} x^{10} + 4 b_{21} x^9 + 4 c_{20} x^8 + 4 a_{19} x^7 + 4 b_{18} x^6 + 8 c_{28} x^4 + 8 b_{27} x^3 + 4 b_{14} x^2 + 8 b_{25} x + 2$ |
$12$ |
$0$ |
$12845056$ |
$12845056/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.90b |
$2$ |
$36$ |
$3$ |
$12$ |
$90$ |
$[3, \frac{19}{6}]$ |
$[2, \frac{13}{6}]$ |
$\langle1, \frac{19}{12}\rangle$ |
$(6, 7)$ |
$x^{12} + 4 b_{23} x^{11} + 4 b_{22} x^{10} + 4 b_{21} x^9 + 4 a_{19} x^7 + 4 b_{18} x^6 + (4 b_{14} + 8 c_{26}) x^2 + 8 b_{25} x + 8 c_{24} + 2$ |
$12$ |
$0$ |
$1835008$ |
$1835008/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.96a |
$2$ |
$36$ |
$3$ |
$12$ |
$96$ |
$[\frac{8}{3}, \frac{11}{3}]$ |
$[\frac{5}{3}, \frac{8}{3}]$ |
$\langle\frac{5}{6}, \frac{7}{4}\rangle$ |
$(5, 11)$ |
$x^{12} + 4 b_{23} x^{11} + 2 a_{10} x^{10} + 4 a_{21} x^9 + (4 c_{20} + 8 c_{32}) x^8 + 8 b_{31} x^7 + 4 b_{18} x^6 + 8 b_{29} x^5 + 8 b_{27} x^3 + 4 b_{14} x^2 + 8 b_{25} x + 2$ |
$12$ |
$0$ |
$102760448$ |
$102760448/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.96b |
$2$ |
$36$ |
$3$ |
$12$ |
$96$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(6, 9)$ |
$x^{12} + 4 b_{23} x^{11} + 4 b_{22} x^{10} + 4 a_{21} x^9 + (4 b_{18} + 8 c_{30}) x^6 + 8 b_{29} x^5 + 8 b_{27} x^3 + 4 b_{14} x^2 + 8 b_{25} x + 8 c_{24} + 2$ |
$12$ |
$0$ |
$14680064$ |
$14680064/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.99a |
$2$ |
$36$ |
$3$ |
$12$ |
$99$ |
$[\frac{8}{3}, \frac{23}{6}]$ |
$[\frac{5}{3}, \frac{17}{6}]$ |
$\langle\frac{5}{6}, \frac{11}{6}\rangle$ |
$(5, 12)$ |
$x^{12} + 4 b_{23} x^{11} + (2 a_{10} + 8 c_{34}) x^{10} + 8 b_{33} x^9 + 4 c_{20} x^8 + 8 b_{31} x^7 + 4 b_{18} x^6 + 8 b_{29} x^5 + 8 b_{27} x^3 + 4 b_{14} x^2 + 8 b_{25} x + 2$ |
$12$ |
$0$ |
$117440512$ |
$117440512/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.102a |
$2$ |
$36$ |
$3$ |
$12$ |
$102$ |
$[3, \frac{23}{6}]$ |
$[2, \frac{17}{6}]$ |
$\langle1, \frac{23}{12}\rangle$ |
$(6, 11)$ |
$x^{12} + 4 a_{23} x^{11} + (4 b_{22} + 8 c_{34}) x^{10} + 8 b_{33} x^9 + 8 b_{31} x^7 + 4 b_{18} x^6 + 8 b_{29} x^5 + 8 b_{27} x^3 + 4 b_{14} x^2 + 8 b_{25} x + 8 c_{24} + 2$ |
$12$ |
$0$ |
$117440512$ |
$117440512/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.3.12.105a |
$2$ |
$36$ |
$3$ |
$12$ |
$105$ |
$[3, 4]$ |
$[2, 3]$ |
$\langle1, 2\rangle$ |
$(6, 12)$ |
$x^{12} + 8 b_{35} x^{11} + 4 b_{22} x^{10} + 8 b_{33} x^9 + 8 b_{31} x^7 + 4 b_{18} x^6 + 8 b_{29} x^5 + 8 b_{27} x^3 + 4 b_{14} x^2 + 8 b_{25} x + 8 c_{24} + 16 c_{36} + 2$ |
$12$ |
$0$ |
$134217728$ |
$134217728/3$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.2.18.36a |
$2$ |
$36$ |
$2$ |
$18$ |
$36$ |
$[\frac{10}{9}]$ |
$[\frac{1}{9}]$ |
$\langle\frac{1}{18}\rangle$ |
$(1)$ |
$x^{18} + 2 c_{2} x^2 + 2 a_{1} x + 2 d_{0}$ |
$12$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.2.18.40a |
$2$ |
$36$ |
$2$ |
$18$ |
$40$ |
$[\frac{4}{3}]$ |
$[\frac{1}{3}]$ |
$\langle\frac{1}{6}\rangle$ |
$(3)$ |
$x^{18} + 2 c_{6} x^6 + 2 b_{5} x^5 + 2 a_{3} x^3 + 2 d_{0}$ |
$12$ |
$0$ |
$12$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.2.18.44a |
$2$ |
$36$ |
$2$ |
$18$ |
$44$ |
$[\frac{14}{9}]$ |
$[\frac{5}{9}]$ |
$\langle\frac{5}{18}\rangle$ |
$(5)$ |
$x^{18} + 2 c_{10} x^{10} + 2 b_{9} x^9 + 2 b_{7} x^7 + 2 a_{5} x^5 + 2 d_{0}$ |
$12$ |
$0$ |
$48$ |
$24$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.2.18.48a |
$2$ |
$36$ |
$2$ |
$18$ |
$48$ |
$[\frac{16}{9}]$ |
$[\frac{7}{9}]$ |
$\langle\frac{7}{18}\rangle$ |
$(7)$ |
$x^{18} + 2 c_{14} x^{14} + 2 b_{13} x^{13} + 2 b_{11} x^{11} + 2 b_{9} x^9 + 2 a_{7} x^7 + 2 d_{0}$ |
$12$ |
$0$ |
$192$ |
$96$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.2.18.52a |
$2$ |
$36$ |
$2$ |
$18$ |
$52$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(9)$ |
$x^{18} + 2 b_{17} x^{17} + 2 b_{15} x^{15} + 2 b_{13} x^{13} + 2 b_{11} x^{11} + 2 a_{9} x^9 + 2 d_{0} + 4 c_{18}$ |
$12$ |
$0$ |
$768$ |
$384$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.2.18.56a |
$2$ |
$36$ |
$2$ |
$18$ |
$56$ |
$[\frac{20}{9}]$ |
$[\frac{11}{9}]$ |
$\langle\frac{11}{18}\rangle$ |
$(11)$ |
$x^{18} + 2 b_{17} x^{17} + 2 b_{15} x^{15} + 2 b_{13} x^{13} + 2 a_{11} x^{11} + 4 c_{22} x^4 + 4 b_{21} x^3 + 4 b_{19} x + 2 d_{0}$ |
$12$ |
$0$ |
$3072$ |
$1536$ |
$0$ |
$0\%$ |
$1$ |
$0$ |