Learn more

Refine search


Results (1-50 of at least 1000)

Next   To download results, determine the number of results.
Label $p$ $n$ $f$ $e$ $c$ Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass Num. Packets
2.32.1.0a $2$ $32$ $32$ $1$ $0$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $32$ $0$ $1$ $0$
2.16.2.32a $2$ $32$ $16$ $2$ $32$ $[2]$ $[1]$ $\langle\frac{1}{2}\rangle$ $(1)$ $x^2 + 2 a_{1} x + 4 c_{2} + 2$ $32$ $0$ $65535$ $0$
2.16.2.48a $2$ $32$ $16$ $2$ $48$ $[3]$ $[2]$ $\langle1\rangle$ $(2)$ $x^2 + 4 b_{3} x + 8 c_{4} + 2$ $32$ $0$ $65536$ $0$
2.8.4.32a $2$ $32$ $8$ $4$ $32$ $[\frac{4}{3}, \frac{4}{3}]$ $[\frac{1}{3}, \frac{1}{3}]$ $\langle\frac{1}{6}, \frac{1}{4}\rangle$ $(\frac{1}{3}, \frac{1}{3})$ $x^4 + 2 a_{1} x + 2$ $8$ $0$ $255$ $0$
2.8.4.48a $2$ $32$ $8$ $4$ $48$ $[2, 2]$ $[1, 1]$ $\langle\frac{1}{2}, \frac{3}{4}\rangle$ $(1, 1)$ $x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 4 c_{4} + 2$ $32$ $0$ $65280$ $0$
2.8.4.64a $2$ $32$ $8$ $4$ $64$ $[\frac{8}{3}, \frac{8}{3}]$ $[\frac{5}{3}, \frac{5}{3}]$ $\langle\frac{5}{6}, \frac{5}{4}\rangle$ $(\frac{5}{3}, \frac{5}{3})$ $x^4 + 4 b_{6} x^2 + 4 a_{5} x + 2$ $8$ $0$ $65280$ $0$
2.8.4.64b $2$ $32$ $8$ $4$ $64$ $[2, 3]$ $[1, 2]$ $\langle\frac{1}{2}, \frac{5}{4}\rangle$ $(1, 3)$ $x^4 + 4 b_{7} x^3 + 2 a_{2} x^2 + 4 a_{5} x + 4 c_{4} + 8 c_{8} + 2$ $32$ $0$ $16646400$ $0$
2.8.4.72a $2$ $32$ $8$ $4$ $72$ $[2, \frac{7}{2}]$ $[1, \frac{5}{2}]$ $\langle\frac{1}{2}, \frac{3}{2}\rangle$ $(1, 4)$ $x^4 + 4 b_{7} x^3 + (2 a_{2} + 8 c_{10}) x^2 + 8 b_{9} x + 4 c_{4} + 2$ $32$ $0$ $16711680$ $0$
2.8.4.80a $2$ $32$ $8$ $4$ $80$ $[3, \frac{7}{2}]$ $[2, \frac{5}{2}]$ $\langle1, \frac{7}{4}\rangle$ $(2, 3)$ $x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ $32$ $0$ $16711680$ $0$
2.8.4.88a $2$ $32$ $8$ $4$ $88$ $[3, 4]$ $[2, 3]$ $\langle1, 2\rangle$ $(2, 4)$ $x^4 + 8 b_{11} x^3 + 4 b_{6} x^2 + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$ $32$ $0$ $16777216$ $0$
2.4.8.32a $2$ $32$ $4$ $8$ $32$ $[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$ $[\frac{1}{7}, \frac{1}{7}, \frac{1}{7}]$ $\langle\frac{1}{14}, \frac{3}{28}, \frac{1}{8}\rangle$ $(\frac{1}{7}, \frac{1}{7}, \frac{1}{7})$ $x^8 + 2 a_{1} x + 2$ $4$ $0$ $15$ $0$
2.4.8.40a $2$ $32$ $4$ $8$ $40$ $[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}]$ $[\frac{3}{7}, \frac{3}{7}, \frac{3}{7}]$ $\langle\frac{3}{14}, \frac{9}{28}, \frac{3}{8}\rangle$ $(\frac{3}{7}, \frac{3}{7}, \frac{3}{7})$ $x^8 + 2 a_{3} x^3 + 2$ $4$ $0$ $15$ $0$
2.4.8.40b $2$ $32$ $4$ $8$ $40$ $[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}]$ $[\frac{1}{3}, \frac{1}{3}, \frac{1}{2}]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}\rangle$ $(\frac{1}{3}, \frac{1}{3}, 1)$ $x^8 + 2 c_{4} x^4 + 2 a_{3} x^3 + 2 a_{2} x^2 + 2$ $8$ $0$ $225$ $0$
2.4.8.48a $2$ $32$ $4$ $8$ $48$ $[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$ $[\frac{5}{7}, \frac{5}{7}, \frac{5}{7}]$ $\langle\frac{5}{14}, \frac{15}{28}, \frac{5}{8}\rangle$ $(\frac{5}{7}, \frac{5}{7}, \frac{5}{7})$ $x^8 + 2 a_{5} x^5 + 2 b_{4} x^4 + 2$ $4$ $0$ $240$ $0$
2.4.8.48b $2$ $32$ $4$ $8$ $48$ $[\frac{4}{3}, \frac{4}{3}, 2]$ $[\frac{1}{3}, \frac{1}{3}, 1]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ $(\frac{1}{3}, \frac{1}{3}, 3)$ $x^8 + 2 b_{7} x^7 + 2 a_{5} x^5 + 2 a_{2} x^2 + 4 c_{8} + 2$ $8$ $0$ $3600$ $0$
2.4.8.56a $2$ $32$ $4$ $8$ $56$ $[2, 2, 2]$ $[1, 1, 1]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\rangle$ $(1, 1, 1)$ $x^8 + 2 a_{7} x^7 + 2 b_{6} x^6 + 2 b_{4} x^4 + 4 c_{8} + 2$ $32$ $0$ $3840$ $0$
2.4.8.56b $2$ $32$ $4$ $8$ $56$ $[\frac{4}{3}, \frac{4}{3}, \frac{5}{2}]$ $[\frac{1}{3}, \frac{1}{3}, \frac{3}{2}]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{7}{8}\rangle$ $(\frac{1}{3}, \frac{1}{3}, 5)$ $x^8 + 2 a_{7} x^7 + 4 c_{12} x^4 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 b_{9} x + 2$ $8$ $0$ $57600$ $0$
2.4.8.64a $2$ $32$ $4$ $8$ $64$ $[\frac{16}{7}, \frac{16}{7}, \frac{16}{7}]$ $[\frac{9}{7}, \frac{9}{7}, \frac{9}{7}]$ $\langle\frac{9}{14}, \frac{27}{28}, \frac{9}{8}\rangle$ $(\frac{9}{7}, \frac{9}{7}, \frac{9}{7})$ $x^8 + 4 b_{10} x^2 + 4 a_{9} x + 2$ $4$ $0$ $240$ $0$
2.4.8.64b $2$ $32$ $4$ $8$ $64$ $[\frac{4}{3}, \frac{4}{3}, 3]$ $[\frac{1}{3}, \frac{1}{3}, 2]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{9}{8}\rangle$ $(\frac{1}{3}, \frac{1}{3}, 7)$ $x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 a_{9} x + 8 c_{16} + 2$ $8$ $0$ $921600$ $0$
2.4.8.64c $2$ $32$ $4$ $8$ $64$ $[2, 2, \frac{5}{2}]$ $[1, 1, \frac{3}{2}]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ $(1, 1, 3)$ $x^8 + 2 a_{6} x^6 + (2 b_{4} + 4 c_{12}) x^4 + 4 b_{11} x^3 + 4 a_{9} x + 4 c_{8} + 2$ $32$ $0$ $57600$ $0$
2.4.8.64d $2$ $32$ $4$ $8$ $64$ $[2, \frac{7}{3}, \frac{7}{3}]$ $[1, \frac{4}{3}, \frac{4}{3}]$ $\langle\frac{1}{2}, \frac{11}{12}, \frac{9}{8}\rangle$ $(1, \frac{5}{3}, \frac{5}{3})$ $x^8 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 a_{9} x + 4 c_{8} + 2$ $8$ $0$ $3600$ $0$
2.4.8.68a $2$ $32$ $4$ $8$ $68$ $[\frac{4}{3}, \frac{4}{3}, \frac{13}{4}]$ $[\frac{1}{3}, \frac{1}{3}, \frac{9}{4}]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{4}\rangle$ $(\frac{1}{3}, \frac{1}{3}, 8)$ $x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + (2 a_{2} + 8 c_{18}) x^2 + 8 b_{17} x + 2$ $8$ $0$ $983040$ $0$
2.4.8.72a $2$ $32$ $4$ $8$ $72$ $[\frac{18}{7}, \frac{18}{7}, \frac{18}{7}]$ $[\frac{11}{7}, \frac{11}{7}, \frac{11}{7}]$ $\langle\frac{11}{14}, \frac{33}{28}, \frac{11}{8}\rangle$ $(\frac{11}{7}, \frac{11}{7}, \frac{11}{7})$ $x^8 + 4 b_{12} x^4 + 4 a_{11} x^3 + 4 b_{10} x^2 + 2$ $4$ $0$ $3840$ $0$
2.4.8.72b $2$ $32$ $4$ $8$ $72$ $[2, 2, 3]$ $[1, 1, 2]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ $(1, 1, 5)$ $x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 b_{13} x^5 + 2 b_{4} x^4 + 4 a_{11} x^3 + 4 c_{8} + 8 c_{16} + 2$ $32$ $0$ $921600$ $0$
2.4.8.72c $2$ $32$ $4$ $8$ $72$ $[2, \frac{8}{3}, \frac{8}{3}]$ $[1, \frac{5}{3}, \frac{5}{3}]$ $\langle\frac{1}{2}, \frac{13}{12}, \frac{11}{8}\rangle$ $(1, \frac{7}{3}, \frac{7}{3})$ $x^8 + 4 b_{13} x^5 + 2 a_{4} x^4 + 4 a_{11} x^3 + 4 b_{10} x^2 + 4 c_{8} + 2$ $8$ $0$ $57600$ $0$
2.4.8.80a $2$ $32$ $4$ $8$ $80$ $[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]$ $[\frac{13}{7}, \frac{13}{7}, \frac{13}{7}]$ $\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}\rangle$ $(\frac{13}{7}, \frac{13}{7}, \frac{13}{7})$ $x^8 + 4 b_{14} x^6 + 4 a_{13} x^5 + 4 b_{12} x^4 + 2$ $4$ $0$ $3840$ $0$
2.4.8.80b $2$ $32$ $4$ $8$ $80$ $[2, 2, \frac{7}{2}]$ $[1, 1, \frac{5}{2}]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{13}{8}\rangle$ $(1, 1, 7)$ $x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 a_{13} x^5 + (2 b_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{17} x + 4 c_{8} + 2$ $32$ $0$ $14745600$ $0$
2.4.8.80c $2$ $32$ $4$ $8$ $80$ $[\frac{8}{3}, \frac{8}{3}, 3]$ $[\frac{5}{3}, \frac{5}{3}, 2]$ $\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$ $(\frac{5}{3}, \frac{5}{3}, 3)$ $x^8 + 4 b_{15} x^7 + 4 a_{13} x^5 + 4 b_{12} x^4 + 4 a_{10} x^2 + 8 c_{16} + 2$ $8$ $0$ $57600$ $0$
2.4.8.80d $2$ $32$ $4$ $8$ $80$ $[2, 3, 3]$ $[1, 2, 2]$ $\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}\rangle$ $(1, 3, 3)$ $x^8 + 4 b_{15} x^7 + 4 b_{14} x^6 + 4 a_{13} x^5 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 c_{8} + 8 c_{16} + 2$ $32$ $0$ $921600$ $0$
2.4.8.84a $2$ $32$ $4$ $8$ $84$ $[2, 2, \frac{15}{4}]$ $[1, 1, \frac{11}{4}]$ $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}\rangle$ $(1, 1, 8)$ $x^8 + 4 b_{15} x^7 + (2 a_{6} + 8 c_{22}) x^6 + 8 b_{21} x^5 + 2 b_{4} x^4 + 8 b_{19} x^3 + 8 b_{17} x + 4 c_{8} + 2$ $32$ $0$ $15728640$ $0$
2.4.8.88a $2$ $32$ $4$ $8$ $88$ $[\frac{8}{3}, \frac{8}{3}, \frac{7}{2}]$ $[\frac{5}{3}, \frac{5}{3}, \frac{5}{2}]$ $\langle\frac{5}{6}, \frac{5}{4}, \frac{15}{8}\rangle$ $(\frac{5}{3}, \frac{5}{3}, 5)$ $x^8 + 4 a_{15} x^7 + (4 b_{12} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 2$ $8$ $0$ $921600$ $0$
2.4.8.88b $2$ $32$ $4$ $8$ $88$ $[2, \frac{10}{3}, \frac{10}{3}]$ $[1, \frac{7}{3}, \frac{7}{3}]$ $\langle\frac{1}{2}, \frac{17}{12}, \frac{15}{8}\rangle$ $(1, \frac{11}{3}, \frac{11}{3})$ $x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 2 a_{4} x^4 + 8 b_{18} x^2 + 8 b_{17} x + 4 c_{8} + 2$ $8$ $0$ $921600$ $0$
2.4.8.88c $2$ $32$ $4$ $8$ $88$ $[3, \frac{19}{6}, \frac{19}{6}]$ $[2, \frac{13}{6}, \frac{13}{6}]$ $\langle1, \frac{19}{12}, \frac{15}{8}\rangle$ $(2, \frac{7}{3}, \frac{7}{3})$ $x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 4 b_{12} x^4 + 8 b_{17} x + 8 c_{16} + 2$ $8$ $0$ $61440$ $0$
2.4.8.88d $2$ $32$ $4$ $8$ $88$ $[2, 3, \frac{7}{2}]$ $[1, 2, \frac{5}{2}]$ $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ $(1, 3, 5)$ $x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 4 c_{8} + 8 c_{16} + 2$ $32$ $0$ $13824000$ $0$
2.4.8.96a $2$ $32$ $4$ $8$ $96$ $[\frac{8}{3}, \frac{8}{3}, 4]$ $[\frac{5}{3}, \frac{5}{3}, 3]$ $\langle\frac{5}{6}, \frac{5}{4}, \frac{17}{8}\rangle$ $(\frac{5}{3}, \frac{5}{3}, 7)$ $x^8 + 8 b_{23} x^7 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 a_{17} x + 16 c_{24} + 2$ $8$ $0$ $14745600$ $0$
2.4.8.96b $2$ $32$ $4$ $8$ $96$ $[3, \frac{7}{2}, \frac{7}{2}]$ $[2, \frac{5}{2}, \frac{5}{2}]$ $\langle1, \frac{7}{4}, \frac{17}{8}\rangle$ $(2, 3, 3)$ $x^8 + 4 b_{14} x^6 + (4 b_{12} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{18} x^2 + 8 a_{17} x + 8 c_{16} + 2$ $32$ $0$ $983040$ $0$
2.4.8.96c $2$ $32$ $4$ $8$ $96$ $[2, 3, 4]$ $[1, 2, 3]$ $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$ $(1, 3, 7)$ $x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + 2 a_{4} x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 a_{17} x + 4 c_{8} + 8 c_{16} + 16 c_{24} + 2$ $32$ $0$ $221184000$ $0$
2.4.8.96d $2$ $32$ $4$ $8$ $96$ $[2, \frac{7}{2}, \frac{15}{4}]$ $[1, \frac{5}{2}, \frac{11}{4}]$ $\langle\frac{1}{2}, \frac{3}{2}, \frac{17}{8}\rangle$ $(1, 4, 5)$ $x^8 + (4 b_{14} + 8 c_{22}) x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{18} x^2 + 8 a_{17} x + 4 c_{8} + 2$ $32$ $0$ $14745600$ $0$
2.4.8.100a $2$ $32$ $4$ $8$ $100$ $[\frac{8}{3}, \frac{8}{3}, \frac{17}{4}]$ $[\frac{5}{3}, \frac{5}{3}, \frac{13}{4}]$ $\langle\frac{5}{6}, \frac{5}{4}, \frac{9}{4}\rangle$ $(\frac{5}{3}, \frac{5}{3}, 8)$ $x^8 + 8 b_{23} x^7 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 b_{19} x^3 + (4 a_{10} + 16 c_{26}) x^2 + 16 b_{25} x + 2$ $8$ $0$ $15728640$ $0$
2.4.8.100b $2$ $32$ $4$ $8$ $100$ $[2, 3, \frac{17}{4}]$ $[1, 2, \frac{13}{4}]$ $\langle\frac{1}{2}, \frac{5}{4}, \frac{9}{4}\rangle$ $(1, 3, 8)$ $x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + 2 a_{4} x^4 + 8 b_{19} x^3 + (4 a_{10} + 16 c_{26}) x^2 + 16 b_{25} x + 4 c_{8} + 8 c_{16} + 2$ $32$ $0$ $235929600$ $0$
2.4.8.104a $2$ $32$ $4$ $8$ $104$ $[3, \frac{23}{6}, \frac{23}{6}]$ $[2, \frac{17}{6}, \frac{17}{6}]$ $\langle1, \frac{23}{12}, \frac{19}{8}\rangle$ $(2, \frac{11}{3}, \frac{11}{3})$ $x^8 + 8 b_{22} x^6 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 a_{19} x^3 + 8 b_{18} x^2 + 8 c_{16} + 2$ $8$ $0$ $983040$ $0$
2.4.8.104b $2$ $32$ $4$ $8$ $104$ $[2, \frac{7}{2}, \frac{17}{4}]$ $[1, \frac{5}{2}, \frac{13}{4}]$ $\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}\rangle$ $(1, 4, 7)$ $x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20}) x^4 + 8 a_{19} x^3 + (8 b_{18} + 16 c_{26}) x^2 + 16 b_{25} x + 4 c_{8} + 2$ $32$ $0$ $235929600$ $0$
2.4.8.104c $2$ $32$ $4$ $8$ $104$ $[3, \frac{7}{2}, 4]$ $[2, \frac{5}{2}, 3]$ $\langle1, \frac{7}{4}, \frac{19}{8}\rangle$ $(2, 3, 5)$ $x^8 + 8 b_{23} x^7 + 4 a_{14} x^6 + 8 b_{21} x^5 + (4 b_{12} + 8 c_{20}) x^4 + 8 a_{19} x^3 + 8 b_{18} x^2 + 8 c_{16} + 16 c_{24} + 2$ $32$ $0$ $14745600$ $0$
2.4.8.108a $2$ $32$ $4$ $8$ $108$ $[2, \frac{7}{2}, \frac{9}{2}]$ $[1, \frac{5}{2}, \frac{7}{2}]$ $\langle\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\rangle$ $(1, 4, 8)$ $x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20} + 16 c_{28}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 4 c_{8} + 2$ $32$ $0$ $251658240$ $0$
2.4.8.112a $2$ $32$ $4$ $8$ $112$ $[3, \frac{7}{2}, \frac{9}{2}]$ $[2, \frac{5}{2}, \frac{7}{2}]$ $\langle1, \frac{7}{4}, \frac{21}{8}\rangle$ $(2, 3, 7)$ $x^8 + 8 b_{23} x^7 + 4 a_{14} x^6 + 8 a_{21} x^5 + (4 b_{12} + 8 c_{20} + 16 c_{28}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 2$ $32$ $0$ $235929600$ $0$
2.4.8.112b $2$ $32$ $4$ $8$ $112$ $[3, 4, \frac{17}{4}]$ $[2, 3, \frac{13}{4}]$ $\langle1, 2, \frac{21}{8}\rangle$ $(2, 4, 5)$ $x^8 + 8 b_{23} x^7 + 8 b_{22} x^6 + 8 a_{21} x^5 + 4 b_{12} x^4 + (8 b_{18} + 16 c_{26}) x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ $32$ $0$ $15728640$ $0$
2.4.8.116a $2$ $32$ $4$ $8$ $116$ $[3, \frac{7}{2}, \frac{19}{4}]$ $[2, \frac{5}{2}, \frac{15}{4}]$ $\langle1, \frac{7}{4}, \frac{11}{4}\rangle$ $(2, 3, 8)$ $x^8 + 8 b_{23} x^7 + (4 a_{14} + 16 c_{30}) x^6 + 16 b_{29} x^5 + (4 b_{12} + 8 c_{20}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 2$ $32$ $0$ $251658240$ $0$
2.4.8.120a $2$ $32$ $4$ $8$ $120$ $[3, 4, \frac{19}{4}]$ $[2, 3, \frac{15}{4}]$ $\langle1, 2, \frac{23}{8}\rangle$ $(2, 4, 7)$ $x^8 + 8 a_{23} x^7 + (8 b_{22} + 16 c_{30}) x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ $32$ $0$ $251658240$ $0$
2.4.8.124a $2$ $32$ $4$ $8$ $124$ $[3, 4, 5]$ $[2, 3, 4]$ $\langle1, 2, 3\rangle$ $(2, 4, 8)$ $x^8 + 16 b_{31} x^7 + 8 b_{22} x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 32 c_{32} + 2$ $32$ $0$ $268435456$ $0$
2.2.16.32a $2$ $32$ $2$ $16$ $32$ $[\frac{16}{15}, \frac{16}{15}, \frac{16}{15}, \frac{16}{15}]$ $[\frac{1}{15}, \frac{1}{15}, \frac{1}{15}, \frac{1}{15}]$ $\langle\frac{1}{30}, \frac{1}{20}, \frac{7}{120}, \frac{1}{16}\rangle$ $(\frac{1}{15}, \frac{1}{15}, \frac{1}{15}, \frac{1}{15})$ $x^{16} + 2 a_{1} x + 2$ $2$ $0$ $3$ $0$
Next   To download results, determine the number of results.