Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
2.32.1.0a |
$2$ |
$32$ |
$32$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$32$ |
$0$ |
$1$ |
$1/32$ |
$0$ |
$0\%$ |
$0$ |
$0$ |
2.16.2.32a |
$2$ |
$32$ |
$16$ |
$2$ |
$32$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$32$ |
$0$ |
$65535$ |
$65535/16$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.16.2.48a |
$2$ |
$32$ |
$16$ |
$2$ |
$48$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$32$ |
$0$ |
$65536$ |
$4096$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.8.4.32a |
$2$ |
$32$ |
$8$ |
$4$ |
$32$ |
$[\frac{4}{3}, \frac{4}{3}]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + 2 a_{1} x + 2$ |
$8$ |
$0$ |
$255$ |
$255/8$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.8.4.48a |
$2$ |
$32$ |
$8$ |
$4$ |
$48$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 4 c_{4} + 2$ |
$32$ |
$0$ |
$65280$ |
$8160$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.8.4.64a |
$2$ |
$32$ |
$8$ |
$4$ |
$64$ |
$[\frac{8}{3}, \frac{8}{3}]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + 4 b_{6} x^2 + 4 a_{5} x + 2$ |
$8$ |
$0$ |
$65280$ |
$8160$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.8.4.64b |
$2$ |
$32$ |
$8$ |
$4$ |
$64$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + 4 b_{7} x^3 + 2 a_{2} x^2 + 4 a_{5} x + 4 c_{4} + 8 c_{8} + 2$ |
$32$ |
$0$ |
$16646400$ |
$2080800$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.8.4.72a |
$2$ |
$32$ |
$8$ |
$4$ |
$72$ |
$[2, \frac{7}{2}]$ |
$[1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}\rangle$ |
$(1, 4)$ |
$x^4 + 4 b_{7} x^3 + (2 a_{2} + 8 c_{10}) x^2 + 8 b_{9} x + 4 c_{4} + 2$ |
$32$ |
$0$ |
$16711680$ |
$2088960$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.8.4.80a |
$2$ |
$32$ |
$8$ |
$4$ |
$80$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$32$ |
$0$ |
$16711680$ |
$2088960$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.8.4.88a |
$2$ |
$32$ |
$8$ |
$4$ |
$88$ |
$[3, 4]$ |
$[2, 3]$ |
$\langle1, 2\rangle$ |
$(2, 4)$ |
$x^4 + 8 b_{11} x^3 + 4 b_{6} x^2 + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$ |
$32$ |
$0$ |
$16777216$ |
$2097152$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.32a |
$2$ |
$32$ |
$4$ |
$8$ |
$32$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$ |
$[\frac{1}{7}, \frac{1}{7}, \frac{1}{7}]$ |
$\langle\frac{1}{14}, \frac{3}{28}, \frac{1}{8}\rangle$ |
$(\frac{1}{7}, \frac{1}{7}, \frac{1}{7})$ |
$x^8 + 2 a_{1} x + 2$ |
$4$ |
$0$ |
$15$ |
$15/4$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.40a |
$2$ |
$32$ |
$4$ |
$8$ |
$40$ |
$[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}]$ |
$[\frac{3}{7}, \frac{3}{7}, \frac{3}{7}]$ |
$\langle\frac{3}{14}, \frac{9}{28}, \frac{3}{8}\rangle$ |
$(\frac{3}{7}, \frac{3}{7}, \frac{3}{7})$ |
$x^8 + 2 a_{3} x^3 + 2$ |
$4$ |
$0$ |
$15$ |
$15/4$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.40b |
$2$ |
$32$ |
$4$ |
$8$ |
$40$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{1}{2}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 1)$ |
$x^8 + 2 c_{4} x^4 + 2 a_{3} x^3 + 2 a_{2} x^2 + 2$ |
$8$ |
$0$ |
$225$ |
$225/4$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.48a |
$2$ |
$32$ |
$4$ |
$8$ |
$48$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$ |
$[\frac{5}{7}, \frac{5}{7}, \frac{5}{7}]$ |
$\langle\frac{5}{14}, \frac{15}{28}, \frac{5}{8}\rangle$ |
$(\frac{5}{7}, \frac{5}{7}, \frac{5}{7})$ |
$x^8 + 2 a_{5} x^5 + 2 b_{4} x^4 + 2$ |
$4$ |
$0$ |
$240$ |
$60$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.48b |
$2$ |
$32$ |
$4$ |
$8$ |
$48$ |
$[\frac{4}{3}, \frac{4}{3}, 2]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + 2 b_{7} x^7 + 2 a_{5} x^5 + 2 a_{2} x^2 + 4 c_{8} + 2$ |
$8$ |
$0$ |
$3600$ |
$900$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.56a |
$2$ |
$32$ |
$4$ |
$8$ |
$56$ |
$[2, 2, 2]$ |
$[1, 1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\rangle$ |
$(1, 1, 1)$ |
$x^8 + 2 a_{7} x^7 + 2 b_{6} x^6 + 2 b_{4} x^4 + 4 c_{8} + 2$ |
$32$ |
$0$ |
$3840$ |
$960$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.56b |
$2$ |
$32$ |
$4$ |
$8$ |
$56$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{5}{2}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{3}{2}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{7}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 5)$ |
$x^8 + 2 a_{7} x^7 + 4 c_{12} x^4 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 b_{9} x + 2$ |
$8$ |
$0$ |
$57600$ |
$14400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.64a |
$2$ |
$32$ |
$4$ |
$8$ |
$64$ |
$[\frac{16}{7}, \frac{16}{7}, \frac{16}{7}]$ |
$[\frac{9}{7}, \frac{9}{7}, \frac{9}{7}]$ |
$\langle\frac{9}{14}, \frac{27}{28}, \frac{9}{8}\rangle$ |
$(\frac{9}{7}, \frac{9}{7}, \frac{9}{7})$ |
$x^8 + 4 b_{10} x^2 + 4 a_{9} x + 2$ |
$4$ |
$0$ |
$240$ |
$60$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.64b |
$2$ |
$32$ |
$4$ |
$8$ |
$64$ |
$[\frac{4}{3}, \frac{4}{3}, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 2]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{9}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 7)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 a_{9} x + 8 c_{16} + 2$ |
$8$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.64c |
$2$ |
$32$ |
$4$ |
$8$ |
$64$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 1, \frac{3}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
$(1, 1, 3)$ |
$x^8 + 2 a_{6} x^6 + (2 b_{4} + 4 c_{12}) x^4 + 4 b_{11} x^3 + 4 a_{9} x + 4 c_{8} + 2$ |
$32$ |
$0$ |
$57600$ |
$14400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.64d |
$2$ |
$32$ |
$4$ |
$8$ |
$64$ |
$[2, \frac{7}{3}, \frac{7}{3}]$ |
$[1, \frac{4}{3}, \frac{4}{3}]$ |
$\langle\frac{1}{2}, \frac{11}{12}, \frac{9}{8}\rangle$ |
$(1, \frac{5}{3}, \frac{5}{3})$ |
$x^8 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 a_{9} x + 4 c_{8} + 2$ |
$8$ |
$0$ |
$3600$ |
$900$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.68a |
$2$ |
$32$ |
$4$ |
$8$ |
$68$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{13}{4}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{9}{4}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 8)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + (2 a_{2} + 8 c_{18}) x^2 + 8 b_{17} x + 2$ |
$8$ |
$0$ |
$983040$ |
$245760$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.72a |
$2$ |
$32$ |
$4$ |
$8$ |
$72$ |
$[\frac{18}{7}, \frac{18}{7}, \frac{18}{7}]$ |
$[\frac{11}{7}, \frac{11}{7}, \frac{11}{7}]$ |
$\langle\frac{11}{14}, \frac{33}{28}, \frac{11}{8}\rangle$ |
$(\frac{11}{7}, \frac{11}{7}, \frac{11}{7})$ |
$x^8 + 4 b_{12} x^4 + 4 a_{11} x^3 + 4 b_{10} x^2 + 2$ |
$4$ |
$0$ |
$3840$ |
$960$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.72b |
$2$ |
$32$ |
$4$ |
$8$ |
$72$ |
$[2, 2, 3]$ |
$[1, 1, 2]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ |
$(1, 1, 5)$ |
$x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 b_{13} x^5 + 2 b_{4} x^4 + 4 a_{11} x^3 + 4 c_{8} + 8 c_{16} + 2$ |
$32$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.72c |
$2$ |
$32$ |
$4$ |
$8$ |
$72$ |
$[2, \frac{8}{3}, \frac{8}{3}]$ |
$[1, \frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{1}{2}, \frac{13}{12}, \frac{11}{8}\rangle$ |
$(1, \frac{7}{3}, \frac{7}{3})$ |
$x^8 + 4 b_{13} x^5 + 2 a_{4} x^4 + 4 a_{11} x^3 + 4 b_{10} x^2 + 4 c_{8} + 2$ |
$8$ |
$0$ |
$57600$ |
$14400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.80a |
$2$ |
$32$ |
$4$ |
$8$ |
$80$ |
$[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]$ |
$[\frac{13}{7}, \frac{13}{7}, \frac{13}{7}]$ |
$\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}\rangle$ |
$(\frac{13}{7}, \frac{13}{7}, \frac{13}{7})$ |
$x^8 + 4 b_{14} x^6 + 4 a_{13} x^5 + 4 b_{12} x^4 + 2$ |
$4$ |
$0$ |
$3840$ |
$960$ |
$0$ |
$0\%$ |
$1$ |
$0$ |
2.4.8.80b |
$2$ |
$32$ |
$4$ |
$8$ |
$80$ |
$[2, 2, \frac{7}{2}]$ |
$[1, 1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{13}{8}\rangle$ |
$(1, 1, 7)$ |
$x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 a_{13} x^5 + (2 b_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{17} x + 4 c_{8} + 2$ |
$32$ |
$0$ |
$14745600$ |
$3686400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.80c |
$2$ |
$32$ |
$4$ |
$8$ |
$80$ |
$[\frac{8}{3}, \frac{8}{3}, 3]$ |
$[\frac{5}{3}, \frac{5}{3}, 2]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 3)$ |
$x^8 + 4 b_{15} x^7 + 4 a_{13} x^5 + 4 b_{12} x^4 + 4 a_{10} x^2 + 8 c_{16} + 2$ |
$8$ |
$0$ |
$57600$ |
$14400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.80d |
$2$ |
$32$ |
$4$ |
$8$ |
$80$ |
$[2, 3, 3]$ |
$[1, 2, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}\rangle$ |
$(1, 3, 3)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{14} x^6 + 4 a_{13} x^5 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 c_{8} + 8 c_{16} + 2$ |
$32$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.84a |
$2$ |
$32$ |
$4$ |
$8$ |
$84$ |
$[2, 2, \frac{15}{4}]$ |
$[1, 1, \frac{11}{4}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}\rangle$ |
$(1, 1, 8)$ |
$x^8 + 4 b_{15} x^7 + (2 a_{6} + 8 c_{22}) x^6 + 8 b_{21} x^5 + 2 b_{4} x^4 + 8 b_{19} x^3 + 8 b_{17} x + 4 c_{8} + 2$ |
$32$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.88a |
$2$ |
$32$ |
$4$ |
$8$ |
$88$ |
$[\frac{8}{3}, \frac{8}{3}, \frac{7}{2}]$ |
$[\frac{5}{3}, \frac{5}{3}, \frac{5}{2}]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{15}{8}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 5)$ |
$x^8 + 4 a_{15} x^7 + (4 b_{12} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 2$ |
$8$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.88b |
$2$ |
$32$ |
$4$ |
$8$ |
$88$ |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[1, \frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{1}{2}, \frac{17}{12}, \frac{15}{8}\rangle$ |
$(1, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 2 a_{4} x^4 + 8 b_{18} x^2 + 8 b_{17} x + 4 c_{8} + 2$ |
$8$ |
$0$ |
$921600$ |
$230400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.88c |
$2$ |
$32$ |
$4$ |
$8$ |
$88$ |
$[3, \frac{19}{6}, \frac{19}{6}]$ |
$[2, \frac{13}{6}, \frac{13}{6}]$ |
$\langle1, \frac{19}{12}, \frac{15}{8}\rangle$ |
$(2, \frac{7}{3}, \frac{7}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 4 b_{12} x^4 + 8 b_{17} x + 8 c_{16} + 2$ |
$8$ |
$0$ |
$61440$ |
$15360$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.88d |
$2$ |
$32$ |
$4$ |
$8$ |
$88$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 2, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ |
$(1, 3, 5)$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 4 c_{8} + 8 c_{16} + 2$ |
$32$ |
$0$ |
$13824000$ |
$3456000$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.96a |
$2$ |
$32$ |
$4$ |
$8$ |
$96$ |
$[\frac{8}{3}, \frac{8}{3}, 4]$ |
$[\frac{5}{3}, \frac{5}{3}, 3]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{17}{8}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 7)$ |
$x^8 + 8 b_{23} x^7 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 a_{17} x + 16 c_{24} + 2$ |
$8$ |
$0$ |
$14745600$ |
$3686400$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.96b |
$2$ |
$32$ |
$4$ |
$8$ |
$96$ |
$[3, \frac{7}{2}, \frac{7}{2}]$ |
$[2, \frac{5}{2}, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}, \frac{17}{8}\rangle$ |
$(2, 3, 3)$ |
$x^8 + 4 b_{14} x^6 + (4 b_{12} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{18} x^2 + 8 a_{17} x + 8 c_{16} + 2$ |
$32$ |
$0$ |
$983040$ |
$245760$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.96c |
$2$ |
$32$ |
$4$ |
$8$ |
$96$ |
$[2, 3, 4]$ |
$[1, 2, 3]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$ |
$(1, 3, 7)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + 2 a_{4} x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 a_{17} x + 4 c_{8} + 8 c_{16} + 16 c_{24} + 2$ |
$32$ |
$0$ |
$221184000$ |
$55296000$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.96d |
$2$ |
$32$ |
$4$ |
$8$ |
$96$ |
$[2, \frac{7}{2}, \frac{15}{4}]$ |
$[1, \frac{5}{2}, \frac{11}{4}]$ |
$\langle\frac{1}{2}, \frac{3}{2}, \frac{17}{8}\rangle$ |
$(1, 4, 5)$ |
$x^8 + (4 b_{14} + 8 c_{22}) x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{18} x^2 + 8 a_{17} x + 4 c_{8} + 2$ |
$32$ |
$0$ |
$14745600$ |
$3686400$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.100a |
$2$ |
$32$ |
$4$ |
$8$ |
$100$ |
$[\frac{8}{3}, \frac{8}{3}, \frac{17}{4}]$ |
$[\frac{5}{3}, \frac{5}{3}, \frac{13}{4}]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{9}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 8)$ |
$x^8 + 8 b_{23} x^7 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 b_{19} x^3 + (4 a_{10} + 16 c_{26}) x^2 + 16 b_{25} x + 2$ |
$8$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.100b |
$2$ |
$32$ |
$4$ |
$8$ |
$100$ |
$[2, 3, \frac{17}{4}]$ |
$[1, 2, \frac{13}{4}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{9}{4}\rangle$ |
$(1, 3, 8)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + 2 a_{4} x^4 + 8 b_{19} x^3 + (4 a_{10} + 16 c_{26}) x^2 + 16 b_{25} x + 4 c_{8} + 8 c_{16} + 2$ |
$32$ |
$0$ |
$235929600$ |
$58982400$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.104a |
$2$ |
$32$ |
$4$ |
$8$ |
$104$ |
$[3, \frac{23}{6}, \frac{23}{6}]$ |
$[2, \frac{17}{6}, \frac{17}{6}]$ |
$\langle1, \frac{23}{12}, \frac{19}{8}\rangle$ |
$(2, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 8 b_{22} x^6 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 a_{19} x^3 + 8 b_{18} x^2 + 8 c_{16} + 2$ |
$8$ |
$0$ |
$983040$ |
$245760$ |
$0$ |
$0\%$ |
$2$ |
$0$ |
2.4.8.104b |
$2$ |
$32$ |
$4$ |
$8$ |
$104$ |
$[2, \frac{7}{2}, \frac{17}{4}]$ |
$[1, \frac{5}{2}, \frac{13}{4}]$ |
$\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}\rangle$ |
$(1, 4, 7)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20}) x^4 + 8 a_{19} x^3 + (8 b_{18} + 16 c_{26}) x^2 + 16 b_{25} x + 4 c_{8} + 2$ |
$32$ |
$0$ |
$235929600$ |
$58982400$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.104c |
$2$ |
$32$ |
$4$ |
$8$ |
$104$ |
$[3, \frac{7}{2}, 4]$ |
$[2, \frac{5}{2}, 3]$ |
$\langle1, \frac{7}{4}, \frac{19}{8}\rangle$ |
$(2, 3, 5)$ |
$x^8 + 8 b_{23} x^7 + 4 a_{14} x^6 + 8 b_{21} x^5 + (4 b_{12} + 8 c_{20}) x^4 + 8 a_{19} x^3 + 8 b_{18} x^2 + 8 c_{16} + 16 c_{24} + 2$ |
$32$ |
$0$ |
$14745600$ |
$3686400$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.108a |
$2$ |
$32$ |
$4$ |
$8$ |
$108$ |
$[2, \frac{7}{2}, \frac{9}{2}]$ |
$[1, \frac{5}{2}, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\rangle$ |
$(1, 4, 8)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20} + 16 c_{28}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 4 c_{8} + 2$ |
$32$ |
$0$ |
$251658240$ |
$62914560$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.112a |
$2$ |
$32$ |
$4$ |
$8$ |
$112$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2, \frac{5}{2}, \frac{7}{2}]$ |
$\langle1, \frac{7}{4}, \frac{21}{8}\rangle$ |
$(2, 3, 7)$ |
$x^8 + 8 b_{23} x^7 + 4 a_{14} x^6 + 8 a_{21} x^5 + (4 b_{12} + 8 c_{20} + 16 c_{28}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 2$ |
$32$ |
$0$ |
$235929600$ |
$58982400$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.112b |
$2$ |
$32$ |
$4$ |
$8$ |
$112$ |
$[3, 4, \frac{17}{4}]$ |
$[2, 3, \frac{13}{4}]$ |
$\langle1, 2, \frac{21}{8}\rangle$ |
$(2, 4, 5)$ |
$x^8 + 8 b_{23} x^7 + 8 b_{22} x^6 + 8 a_{21} x^5 + 4 b_{12} x^4 + (8 b_{18} + 16 c_{26}) x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$32$ |
$0$ |
$15728640$ |
$3932160$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.116a |
$2$ |
$32$ |
$4$ |
$8$ |
$116$ |
$[3, \frac{7}{2}, \frac{19}{4}]$ |
$[2, \frac{5}{2}, \frac{15}{4}]$ |
$\langle1, \frac{7}{4}, \frac{11}{4}\rangle$ |
$(2, 3, 8)$ |
$x^8 + 8 b_{23} x^7 + (4 a_{14} + 16 c_{30}) x^6 + 16 b_{29} x^5 + (4 b_{12} + 8 c_{20}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 2$ |
$32$ |
$0$ |
$251658240$ |
$62914560$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.120a |
$2$ |
$32$ |
$4$ |
$8$ |
$120$ |
$[3, 4, \frac{19}{4}]$ |
$[2, 3, \frac{15}{4}]$ |
$\langle1, 2, \frac{23}{8}\rangle$ |
$(2, 4, 7)$ |
$x^8 + 8 a_{23} x^7 + (8 b_{22} + 16 c_{30}) x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$32$ |
$0$ |
$251658240$ |
$62914560$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.4.8.124a |
$2$ |
$32$ |
$4$ |
$8$ |
$124$ |
$[3, 4, 5]$ |
$[2, 3, 4]$ |
$\langle1, 2, 3\rangle$ |
$(2, 4, 8)$ |
$x^8 + 16 b_{31} x^7 + 8 b_{22} x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 32 c_{32} + 2$ |
$32$ |
$0$ |
$268435456$ |
$67108864$ |
$0$ |
$0\%$ |
$3$ |
$0$ |
2.2.16.32a |
$2$ |
$32$ |
$2$ |
$16$ |
$32$ |
$[\frac{16}{15}, \frac{16}{15}, \frac{16}{15}, \frac{16}{15}]$ |
$[\frac{1}{15}, \frac{1}{15}, \frac{1}{15}, \frac{1}{15}]$ |
$\langle\frac{1}{30}, \frac{1}{20}, \frac{7}{120}, \frac{1}{16}\rangle$ |
$(\frac{1}{15}, \frac{1}{15}, \frac{1}{15}, \frac{1}{15})$ |
$x^{16} + 2 a_{1} x + 2$ |
$2$ |
$0$ |
$3$ |
$3/2$ |
$0$ |
$0\%$ |
$1$ |
$0$ |