Learn more

Refine search


Results (1-50 of 482 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass Num. Packets
3.27.1.0a $3$ $27$ $27$ $1$ $0$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $27$ $0$ $1$ $0$
3.9.3.27a $3$ $27$ $9$ $3$ $27$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(\frac{1}{2})$ $x^3 + 3 a_{1} x + 3$ $9$ $0$ $19682$ $0$
3.9.3.36a $3$ $27$ $9$ $3$ $36$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(1)$ $x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ $27$ $0$ $19682$ $0$
3.9.3.45a $3$ $27$ $9$ $3$ $45$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(\frac{3}{2})$ $x^3 + 9 b_{4} x + 3$ $9$ $0$ $19683$ $0$
3.3.9.27a $3$ $27$ $3$ $9$ $27$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^9 + 3 a_{1} x + 3$ $3$ $0$ $26$ $0$
3.3.9.30a $3$ $27$ $3$ $9$ $30$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^9 + 3 a_{2} x^2 + 3$ $3$ $0$ $26$ $0$
3.3.9.36a $3$ $27$ $3$ $9$ $36$ $[\frac{3}{2}, \frac{3}{2}]$ $[\frac{1}{2}, \frac{1}{2}]$ $\langle\frac{1}{3}, \frac{4}{9}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ $3$ $0$ $702$ $0$
3.3.9.39a $3$ $27$ $3$ $9$ $39$ $[\frac{13}{8}, \frac{13}{8}]$ $[\frac{5}{8}, \frac{5}{8}]$ $\langle\frac{5}{12}, \frac{5}{9}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^9 + 3 a_{5} x^5 + 3$ $3$ $0$ $26$ $0$
3.3.9.39b $3$ $27$ $3$ $9$ $39$ $[\frac{3}{2}, \frac{5}{3}]$ $[\frac{1}{2}, \frac{2}{3}]$ $\langle\frac{1}{3}, \frac{5}{9}\rangle$ $(\frac{1}{2}, 1)$ $x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ $9$ $0$ $676$ $0$
3.3.9.45a $3$ $27$ $3$ $9$ $45$ $[\frac{15}{8}, \frac{15}{8}]$ $[\frac{7}{8}, \frac{7}{8}]$ $\langle\frac{7}{12}, \frac{7}{9}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ $3$ $0$ $702$ $0$
3.3.9.45b $3$ $27$ $3$ $9$ $45$ $[\frac{3}{2}, 2]$ $[\frac{1}{2}, 1]$ $\langle\frac{1}{3}, \frac{7}{9}\rangle$ $(\frac{1}{2}, 2)$ $x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ $9$ $0$ $18252$ $0$
3.3.9.48a $3$ $27$ $3$ $9$ $48$ $[2, 2]$ $[1, 1]$ $\langle\frac{2}{3}, \frac{8}{9}\rangle$ $(1, 1)$ $x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ $27$ $0$ $702$ $0$
3.3.9.48b $3$ $27$ $3$ $9$ $48$ $[\frac{3}{2}, \frac{13}{6}]$ $[\frac{1}{2}, \frac{7}{6}]$ $\langle\frac{1}{3}, \frac{8}{9}\rangle$ $(\frac{1}{2}, \frac{5}{2})$ $x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ $3$ $0$ $18252$ $0$
3.3.9.54a $3$ $27$ $3$ $9$ $54$ $[\frac{9}{4}, \frac{9}{4}]$ $[\frac{5}{4}, \frac{5}{4}]$ $\langle\frac{5}{6}, \frac{10}{9}\rangle$ $(\frac{5}{4}, \frac{5}{4})$ $x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $3$ $0$ $702$ $0$
3.3.9.54b $3$ $27$ $3$ $9$ $54$ $[\frac{3}{2}, \frac{5}{2}]$ $[\frac{1}{2}, \frac{3}{2}]$ $\langle\frac{1}{3}, \frac{10}{9}\rangle$ $(\frac{1}{2}, \frac{7}{2})$ $x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $3$ $0$ $492804$ $0$
3.3.9.54c $3$ $27$ $3$ $9$ $54$ $[2, \frac{7}{3}]$ $[1, \frac{4}{3}]$ $\langle\frac{2}{3}, \frac{10}{9}\rangle$ $(1, 2)$ $x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ $27$ $0$ $18252$ $0$
3.3.9.57a $3$ $27$ $3$ $9$ $57$ $[\frac{19}{8}, \frac{19}{8}]$ $[\frac{11}{8}, \frac{11}{8}]$ $\langle\frac{11}{12}, \frac{11}{9}\rangle$ $(\frac{11}{8}, \frac{11}{8})$ $x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ $3$ $0$ $702$ $0$
3.3.9.57b $3$ $27$ $3$ $9$ $57$ $[\frac{3}{2}, \frac{8}{3}]$ $[\frac{1}{2}, \frac{5}{3}]$ $\langle\frac{1}{3}, \frac{11}{9}\rangle$ $(\frac{1}{2}, 4)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ $9$ $0$ $492804$ $0$
3.3.9.57c $3$ $27$ $3$ $9$ $57$ $[2, \frac{5}{2}]$ $[1, \frac{3}{2}]$ $\langle\frac{2}{3}, \frac{11}{9}\rangle$ $(1, \frac{5}{2})$ $x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ $9$ $0$ $18252$ $0$
3.3.9.60a $3$ $27$ $3$ $9$ $60$ $[\frac{3}{2}, \frac{17}{6}]$ $[\frac{1}{2}, \frac{11}{6}]$ $\langle\frac{1}{3}, \frac{4}{3}\rangle$ $(\frac{1}{2}, \frac{9}{2})$ $x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ $3$ $0$ $511758$ $0$
3.3.9.63a $3$ $27$ $3$ $9$ $63$ $[2, \frac{17}{6}]$ $[1, \frac{11}{6}]$ $\langle\frac{2}{3}, \frac{13}{9}\rangle$ $(1, \frac{7}{2})$ $x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ $9$ $0$ $492804$ $0$
3.3.9.63b $3$ $27$ $3$ $9$ $63$ $[\frac{5}{2}, \frac{8}{3}]$ $[\frac{3}{2}, \frac{5}{3}]$ $\langle1, \frac{13}{9}\rangle$ $(\frac{3}{2}, 2)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ $9$ $0$ $18954$ $0$
3.3.9.66a $3$ $27$ $3$ $9$ $66$ $[2, 3]$ $[1, 2]$ $\langle\frac{2}{3}, \frac{14}{9}\rangle$ $(1, 4)$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ $27$ $0$ $492804$ $0$
3.3.9.66b $3$ $27$ $3$ $9$ $66$ $[\frac{5}{2}, \frac{17}{6}]$ $[\frac{3}{2}, \frac{11}{6}]$ $\langle1, \frac{14}{9}\rangle$ $(\frac{3}{2}, \frac{5}{2})$ $x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ $3$ $0$ $18954$ $0$
3.3.9.69a $3$ $27$ $3$ $9$ $69$ $[2, \frac{19}{6}]$ $[1, \frac{13}{6}]$ $\langle\frac{2}{3}, \frac{5}{3}\rangle$ $(1, \frac{9}{2})$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ $9$ $0$ $511758$ $0$
3.3.9.72a $3$ $27$ $3$ $9$ $72$ $[\frac{5}{2}, \frac{19}{6}]$ $[\frac{3}{2}, \frac{13}{6}]$ $\langle1, \frac{16}{9}\rangle$ $(\frac{3}{2}, \frac{7}{2})$ $x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ $3$ $0$ $511758$ $0$
3.3.9.75a $3$ $27$ $3$ $9$ $75$ $[\frac{5}{2}, \frac{10}{3}]$ $[\frac{3}{2}, \frac{7}{3}]$ $\langle1, \frac{17}{9}\rangle$ $(\frac{3}{2}, 4)$ $x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $9$ $0$ $511758$ $0$
3.3.9.78a $3$ $27$ $3$ $9$ $78$ $[\frac{5}{2}, \frac{7}{2}]$ $[\frac{3}{2}, \frac{5}{2}]$ $\langle1, 2\rangle$ $(\frac{3}{2}, \frac{9}{2})$ $x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $3$ $0$ $531441$ $0$
3.1.27.27a $3$ $27$ $1$ $27$ $27$ $[\frac{27}{26}, \frac{27}{26}, \frac{27}{26}]$ $[\frac{1}{26}, \frac{1}{26}, \frac{1}{26}]$ $\langle\frac{1}{39}, \frac{4}{117}, \frac{1}{27}\rangle$ $(\frac{1}{26}, \frac{1}{26}, \frac{1}{26})$ $x^{27} + 3 a_{1} x + 3$ $1$ $0$ $2$ $0$
3.1.27.28a $3$ $27$ $1$ $27$ $28$ $[\frac{14}{13}, \frac{14}{13}, \frac{14}{13}]$ $[\frac{1}{13}, \frac{1}{13}, \frac{1}{13}]$ $\langle\frac{2}{39}, \frac{8}{117}, \frac{2}{27}\rangle$ $(\frac{1}{13}, \frac{1}{13}, \frac{1}{13})$ $x^{27} + 3 a_{2} x^2 + 3$ $1$ $0$ $2$ $0$
3.1.27.30a $3$ $27$ $1$ $27$ $30$ $[\frac{15}{13}, \frac{15}{13}, \frac{15}{13}]$ $[\frac{2}{13}, \frac{2}{13}, \frac{2}{13}]$ $\langle\frac{4}{39}, \frac{16}{117}, \frac{4}{27}\rangle$ $(\frac{2}{13}, \frac{2}{13}, \frac{2}{13})$ $x^{27} + 3 a_{4} x^4 + 3$ $1$ $0$ $2$ $0$
3.1.27.30b $3$ $27$ $1$ $27$ $30$ $[\frac{9}{8}, \frac{9}{8}, \frac{7}{6}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{1}{6}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{4}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, \frac{1}{2})$ $x^{27} + 3 a_{4} x^4 + 3 a_{3} x^3 + 3$ $1$ $0$ $4$ $0$
3.1.27.31a $3$ $27$ $1$ $27$ $31$ $[\frac{31}{26}, \frac{31}{26}, \frac{31}{26}]$ $[\frac{5}{26}, \frac{5}{26}, \frac{5}{26}]$ $\langle\frac{5}{39}, \frac{20}{117}, \frac{5}{27}\rangle$ $(\frac{5}{26}, \frac{5}{26}, \frac{5}{26})$ $x^{27} + 3 a_{5} x^5 + 3$ $1$ $0$ $2$ $0$
3.1.27.31b $3$ $27$ $1$ $27$ $31$ $[\frac{9}{8}, \frac{9}{8}, \frac{11}{9}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{2}{9}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{5}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, 1)$ $x^{27} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ $3$ $0$ $4$ $0$
3.1.27.33a $3$ $27$ $1$ $27$ $33$ $[\frac{33}{26}, \frac{33}{26}, \frac{33}{26}]$ $[\frac{7}{26}, \frac{7}{26}, \frac{7}{26}]$ $\langle\frac{7}{39}, \frac{28}{117}, \frac{7}{27}\rangle$ $(\frac{7}{26}, \frac{7}{26}, \frac{7}{26})$ $x^{27} + 3 a_{7} x^7 + 3$ $1$ $0$ $2$ $0$
3.1.27.33b $3$ $27$ $1$ $27$ $33$ $[\frac{9}{8}, \frac{9}{8}, \frac{4}{3}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{1}{3}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{7}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, 2)$ $x^{27} + 3 c_{9} x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 3$ $3$ $0$ $12$ $0$
3.1.27.33c $3$ $27$ $1$ $27$ $33$ $[\frac{5}{4}, \frac{5}{4}, \frac{23}{18}]$ $[\frac{1}{4}, \frac{1}{4}, \frac{5}{18}]$ $\langle\frac{1}{6}, \frac{2}{9}, \frac{7}{27}\rangle$ $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ $x^{27} + 3 a_{7} x^7 + 3 a_{6} x^6 + 3$ $1$ $0$ $4$ $0$
3.1.27.34a $3$ $27$ $1$ $27$ $34$ $[\frac{17}{13}, \frac{17}{13}, \frac{17}{13}]$ $[\frac{4}{13}, \frac{4}{13}, \frac{4}{13}]$ $\langle\frac{8}{39}, \frac{32}{117}, \frac{8}{27}\rangle$ $(\frac{4}{13}, \frac{4}{13}, \frac{4}{13})$ $x^{27} + 3 a_{8} x^8 + 3$ $1$ $0$ $2$ $0$
3.1.27.34b $3$ $27$ $1$ $27$ $34$ $[\frac{9}{8}, \frac{9}{8}, \frac{25}{18}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{7}{18}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{8}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, \frac{5}{2})$ $x^{27} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 a_{3} x^3 + 3$ $1$ $0$ $12$ $0$
3.1.27.34c $3$ $27$ $1$ $27$ $34$ $[\frac{5}{4}, \frac{5}{4}, \frac{4}{3}]$ $[\frac{1}{4}, \frac{1}{4}, \frac{1}{3}]$ $\langle\frac{1}{6}, \frac{2}{9}, \frac{8}{27}\rangle$ $(\frac{1}{4}, \frac{1}{4}, 1)$ $x^{27} + 3 c_{9} x^9 + 3 a_{8} x^8 + 3 a_{6} x^6 + 3$ $3$ $0$ $4$ $0$
3.1.27.36a $3$ $27$ $1$ $27$ $36$ $[\frac{18}{13}, \frac{18}{13}, \frac{18}{13}]$ $[\frac{5}{13}, \frac{5}{13}, \frac{5}{13}]$ $\langle\frac{10}{39}, \frac{40}{117}, \frac{10}{27}\rangle$ $(\frac{5}{13}, \frac{5}{13}, \frac{5}{13})$ $x^{27} + 3 a_{10} x^{10} + 3 b_{9} x^9 + 3$ $1$ $0$ $6$ $0$
3.1.27.36b $3$ $27$ $1$ $27$ $36$ $[\frac{9}{8}, \frac{9}{8}, \frac{3}{2}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{1}{2}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{10}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, \frac{7}{2})$ $x^{27} + 3 b_{13} x^{13} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 a_{3} x^3 + 3$ $1$ $0$ $36$ $0$
3.1.27.36c $3$ $27$ $1$ $27$ $36$ $[\frac{5}{4}, \frac{5}{4}, \frac{13}{9}]$ $[\frac{1}{4}, \frac{1}{4}, \frac{4}{9}]$ $\langle\frac{1}{6}, \frac{2}{9}, \frac{10}{27}\rangle$ $(\frac{1}{4}, \frac{1}{4}, 2)$ $x^{27} + 3 c_{12} x^{12} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 a_{6} x^6 + 3$ $3$ $0$ $12$ $0$
3.1.27.37a $3$ $27$ $1$ $27$ $37$ $[\frac{37}{26}, \frac{37}{26}, \frac{37}{26}]$ $[\frac{11}{26}, \frac{11}{26}, \frac{11}{26}]$ $\langle\frac{11}{39}, \frac{44}{117}, \frac{11}{27}\rangle$ $(\frac{11}{26}, \frac{11}{26}, \frac{11}{26})$ $x^{27} + 3 a_{11} x^{11} + 3 b_{9} x^9 + 3$ $1$ $0$ $6$ $0$
3.1.27.37b $3$ $27$ $1$ $27$ $37$ $[\frac{9}{8}, \frac{9}{8}, \frac{14}{9}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{5}{9}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{11}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, 4)$ $x^{27} + 3 c_{15} x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 3 a_{3} x^3 + 3$ $3$ $0$ $36$ $0$
3.1.27.37c $3$ $27$ $1$ $27$ $37$ $[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}]$ $[\frac{1}{4}, \frac{1}{4}, \frac{1}{2}]$ $\langle\frac{1}{6}, \frac{2}{9}, \frac{11}{27}\rangle$ $(\frac{1}{4}, \frac{1}{4}, \frac{5}{2})$ $x^{27} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 3 a_{6} x^6 + 3$ $1$ $0$ $12$ $0$
3.1.27.39a $3$ $27$ $1$ $27$ $39$ $[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}]$ $[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$ $\langle\frac{1}{3}, \frac{4}{9}, \frac{13}{27}\rangle$ $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $x^{27} + 3 a_{13} x^{13} + 3 b_{12} x^{12} + 3 b_{9} x^9 + 3$ $1$ $0$ $18$ $0$
3.1.27.39b $3$ $27$ $1$ $27$ $39$ $[\frac{9}{8}, \frac{9}{8}, \frac{5}{3}]$ $[\frac{1}{8}, \frac{1}{8}, \frac{2}{3}]$ $\langle\frac{1}{12}, \frac{1}{9}, \frac{13}{27}\rangle$ $(\frac{1}{8}, \frac{1}{8}, 5)$ $x^{27} + 3 c_{18} x^{18} + 3 b_{17} x^{17} + 3 b_{16} x^{16} + 3 b_{14} x^{14} + 3 a_{13} x^{13} + 3 a_{3} x^3 + 3$ $3$ $0$ $108$ $0$
3.1.27.39c $3$ $27$ $1$ $27$ $39$ $[\frac{5}{4}, \frac{5}{4}, \frac{29}{18}]$ $[\frac{1}{4}, \frac{1}{4}, \frac{11}{18}]$ $\langle\frac{1}{6}, \frac{2}{9}, \frac{13}{27}\rangle$ $(\frac{1}{4}, \frac{1}{4}, \frac{7}{2})$ $x^{27} + 3 b_{16} x^{16} + 3 b_{14} x^{14} + 3 a_{13} x^{13} + 3 a_{6} x^6 + 3$ $1$ $0$ $36$ $0$
3.1.27.40a $3$ $27$ $1$ $27$ $40$ $[\frac{20}{13}, \frac{20}{13}, \frac{20}{13}]$ $[\frac{7}{13}, \frac{7}{13}, \frac{7}{13}]$ $\langle\frac{14}{39}, \frac{56}{117}, \frac{14}{27}\rangle$ $(\frac{7}{13}, \frac{7}{13}, \frac{7}{13})$ $x^{27} + 3 a_{14} x^{14} + 3$ $1$ $0$ $2$ $0$
Next   displayed columns for results