Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
5.20.1.0a |
$5$ |
$20$ |
$20$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$20$ |
$1$ |
$1$ |
$1/20$ |
$1/20$ |
$100\%$ |
$0$ |
$1$ |
5.10.2.10a |
$5$ |
$20$ |
$10$ |
$2$ |
$10$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + 5 d_{0}$ |
$20$ |
$2$ |
$1$ |
$1/10$ |
$1/10$ |
$100\%$ |
$0$ |
|
5.5.4.15a |
$5$ |
$20$ |
$5$ |
$4$ |
$15$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^4 + 5 d_{0}$ |
$20$ |
$4$ |
$1$ |
$1/5$ |
$1/5$ |
$100\%$ |
$0$ |
|
5.4.5.20a |
$5$ |
$20$ |
$4$ |
$5$ |
$20$ |
$[\frac{5}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{5}\rangle$ |
$(\frac{1}{4})$ |
$x^5 + 5 a_{1} x + 5$ |
$4$ |
$164$ |
$624$ |
$156$ |
$156$ |
$100\%$ |
$1$ |
|
5.4.5.24a |
$5$ |
$20$ |
$4$ |
$5$ |
$24$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{2}{5}\rangle$ |
$(\frac{1}{2})$ |
$x^5 + 5 a_{2} x^2 + 5$ |
$4$ |
$164$ |
$624$ |
$156$ |
$156$ |
$100\%$ |
$1$ |
|
5.4.5.28a |
$5$ |
$20$ |
$4$ |
$5$ |
$28$ |
$[\frac{7}{4}]$ |
$[\frac{3}{4}]$ |
$\langle\frac{3}{5}\rangle$ |
$(\frac{3}{4})$ |
$x^5 + 5 a_{3} x^3 + 5$ |
$4$ |
$164$ |
$624$ |
$156$ |
$156$ |
$100\%$ |
$1$ |
|
5.4.5.32a |
$5$ |
$20$ |
$4$ |
$5$ |
$32$ |
$[2]$ |
$[1]$ |
$\langle\frac{4}{5}\rangle$ |
$(1)$ |
$x^5 + 5 a_{4} x^4 + 25 c_{5} + 5$ |
$20$ |
$328$ |
$624$ |
$156$ |
$156$ |
$100\%$ |
$1$ |
|
5.4.5.36a |
$5$ |
$20$ |
$4$ |
$5$ |
$36$ |
$[\frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle1\rangle$ |
$(\frac{5}{4})$ |
$x^5 + 25 b_{6} x + 5$ |
$4$ |
$165$ |
$625$ |
$625/4$ |
$625/4$ |
$100\%$ |
$1$ |
|
5.2.10.20a |
$5$ |
$20$ |
$2$ |
$10$ |
$20$ |
$[\frac{9}{8}]$ |
$[\frac{1}{8}]$ |
$\langle\frac{1}{10}\rangle$ |
$(\frac{1}{4})$ |
$x^{10} + 5 a_{1} x + 5 d_{0}$ |
$4$ |
$14$ |
$24$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
|
5.2.10.22a |
$5$ |
$20$ |
$2$ |
$10$ |
$22$ |
$[\frac{5}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{5}\rangle$ |
$(\frac{1}{2})$ |
$x^{10} + 5 a_{2} x^2 + 5 d_{0}$ |
$4$ |
$28$ |
$24$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
|
5.2.10.24a |
$5$ |
$20$ |
$2$ |
$10$ |
$24$ |
$[\frac{11}{8}]$ |
$[\frac{3}{8}]$ |
$\langle\frac{3}{10}\rangle$ |
$(\frac{3}{4})$ |
$x^{10} + 5 a_{3} x^3 + 5 d_{0}$ |
$4$ |
$14$ |
$24$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
|
5.2.10.26a |
$5$ |
$20$ |
$2$ |
$10$ |
$26$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{2}{5}\rangle$ |
$(1)$ |
$x^{10} + 5 c_{5} x^5 + 5 a_{4} x^4 + 5 d_{0}$ |
$20$ |
$42$ |
$24$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
|
5.2.10.30a |
$5$ |
$20$ |
$2$ |
$10$ |
$30$ |
$[\frac{7}{4}]$ |
$[\frac{3}{4}]$ |
$\langle\frac{3}{5}\rangle$ |
$(\frac{3}{2})$ |
$x^{10} + 5 b_{7} x^7 + 5 a_{6} x^6 + 5 d_{0}$ |
$4$ |
$324$ |
$600$ |
$300$ |
$300$ |
$100\%$ |
$1$ |
|
5.2.10.32a |
$5$ |
$20$ |
$2$ |
$10$ |
$32$ |
$[\frac{15}{8}]$ |
$[\frac{7}{8}]$ |
$\langle\frac{7}{10}\rangle$ |
$(\frac{7}{4})$ |
$x^{10} + 5 b_{8} x^8 + 5 a_{7} x^7 + 5 d_{0}$ |
$4$ |
$310$ |
$600$ |
$300$ |
$300$ |
$100\%$ |
$1$ |
|
5.2.10.34a |
$5$ |
$20$ |
$2$ |
$10$ |
$34$ |
$[2]$ |
$[1]$ |
$\langle\frac{4}{5}\rangle$ |
$(2)$ |
$x^{10} + 5 b_{9} x^9 + 5 a_{8} x^8 + 5 d_{0} + 25 c_{10}$ |
$20$ |
$648$ |
$600$ |
$300$ |
$300$ |
$100\%$ |
$1$ |
|
5.2.10.36a |
$5$ |
$20$ |
$2$ |
$10$ |
$36$ |
$[\frac{17}{8}]$ |
$[\frac{9}{8}]$ |
$\langle\frac{9}{10}\rangle$ |
$(\frac{9}{4})$ |
$x^{10} + 5 a_{9} x^9 + 25 b_{11} x + 5 d_{0}$ |
$4$ |
$310$ |
$600$ |
$300$ |
$300$ |
$100\%$ |
$1$ |
|
5.2.10.38a |
$5$ |
$20$ |
$2$ |
$10$ |
$38$ |
$[\frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle1\rangle$ |
$(\frac{5}{2})$ |
$x^{10} + 25 b_{12} x^2 + 25 b_{11} x + 5 d_{0}$ |
$4$ |
$340$ |
$625$ |
$625/2$ |
$625/2$ |
$100\%$ |
$1$ |
|
5.1.20.20a |
$5$ |
$20$ |
$1$ |
$20$ |
$20$ |
$[\frac{17}{16}]$ |
$[\frac{1}{16}]$ |
$\langle\frac{1}{20}\rangle$ |
$(\frac{1}{4})$ |
$x^{20} + 5 a_{1} x + 5 d_{0}$ |
$4$ |
$4$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
5.1.20.21a |
$5$ |
$20$ |
$1$ |
$20$ |
$21$ |
$[\frac{9}{8}]$ |
$[\frac{1}{8}]$ |
$\langle\frac{1}{10}\rangle$ |
$(\frac{1}{2})$ |
$x^{20} + 5 a_{2} x^2 + 5 d_{0}$ |
$4$ |
$8$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
5.1.20.22a |
$5$ |
$20$ |
$1$ |
$20$ |
$22$ |
$[\frac{19}{16}]$ |
$[\frac{3}{16}]$ |
$\langle\frac{3}{20}\rangle$ |
$(\frac{3}{4})$ |
$x^{20} + 5 a_{3} x^3 + 5 d_{0}$ |
$4$ |
$4$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
5.1.20.23a |
$5$ |
$20$ |
$1$ |
$20$ |
$23$ |
$[\frac{5}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{5}\rangle$ |
$(1)$ |
$x^{20} + 5 c_{5} x^5 + 5 a_{4} x^4 + 5 d_{0}$ |
$20$ |
$20$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
5.1.20.25a |
$5$ |
$20$ |
$1$ |
$20$ |
$25$ |
$[\frac{11}{8}]$ |
$[\frac{3}{8}]$ |
$\langle\frac{3}{10}\rangle$ |
$(\frac{3}{2})$ |
$x^{20} + 5 b_{7} x^7 + 5 a_{6} x^6 + 5 d_{0}$ |
$4$ |
$24$ |
$20$ |
$20$ |
$20$ |
$100\%$ |
$1$ |
|
5.1.20.26a |
$5$ |
$20$ |
$1$ |
$20$ |
$26$ |
$[\frac{23}{16}]$ |
$[\frac{7}{16}]$ |
$\langle\frac{7}{20}\rangle$ |
$(\frac{7}{4})$ |
$x^{20} + 5 b_{8} x^8 + 5 a_{7} x^7 + 5 d_{0}$ |
$4$ |
$20$ |
$20$ |
$20$ |
$20$ |
$100\%$ |
$1$ |
|
5.1.20.27a |
$5$ |
$20$ |
$1$ |
$20$ |
$27$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{2}{5}\rangle$ |
$(2)$ |
$x^{20} + 5 c_{10} x^{10} + 5 b_{9} x^9 + 5 a_{8} x^8 + 5 d_{0}$ |
$20$ |
$56$ |
$20$ |
$20$ |
$20$ |
$100\%$ |
$1$ |
|
5.1.20.28a |
$5$ |
$20$ |
$1$ |
$20$ |
$28$ |
$[\frac{25}{16}]$ |
$[\frac{9}{16}]$ |
$\langle\frac{9}{20}\rangle$ |
$(\frac{9}{4})$ |
$x^{20} + 5 b_{11} x^{11} + 5 a_{9} x^9 + 5 d_{0}$ |
$4$ |
$20$ |
$20$ |
$20$ |
$20$ |
$100\%$ |
$1$ |
|
5.1.20.30a |
$5$ |
$20$ |
$1$ |
$20$ |
$30$ |
$[\frac{27}{16}]$ |
$[\frac{11}{16}]$ |
$\langle\frac{11}{20}\rangle$ |
$(\frac{11}{4})$ |
$x^{20} + 5 b_{13} x^{13} + 5 b_{12} x^{12} + 5 a_{11} x^{11} + 5 d_{0}$ |
$4$ |
$100$ |
$100$ |
$100$ |
$100$ |
$100\%$ |
$1$ |
|
5.1.20.31a |
$5$ |
$20$ |
$1$ |
$20$ |
$31$ |
$[\frac{7}{4}]$ |
$[\frac{3}{4}]$ |
$\langle\frac{3}{5}\rangle$ |
$(3)$ |
$x^{20} + 5 c_{15} x^{15} + 5 b_{14} x^{14} + 5 b_{13} x^{13} + 5 a_{12} x^{12} + 5 d_{0}$ |
$20$ |
$228$ |
$100$ |
$100$ |
$100$ |
$100\%$ |
$1$ |
|
5.1.20.32a |
$5$ |
$20$ |
$1$ |
$20$ |
$32$ |
$[\frac{29}{16}]$ |
$[\frac{13}{16}]$ |
$\langle\frac{13}{20}\rangle$ |
$(\frac{13}{4})$ |
$x^{20} + 5 b_{16} x^{16} + 5 b_{14} x^{14} + 5 a_{13} x^{13} + 5 d_{0}$ |
$4$ |
$100$ |
$100$ |
$100$ |
$100$ |
$100\%$ |
$1$ |
|
5.1.20.33a |
$5$ |
$20$ |
$1$ |
$20$ |
$33$ |
$[\frac{15}{8}]$ |
$[\frac{7}{8}]$ |
$\langle\frac{7}{10}\rangle$ |
$(\frac{7}{2})$ |
$x^{20} + 5 b_{17} x^{17} + 5 b_{16} x^{16} + 5 a_{14} x^{14} + 5 d_{0}$ |
$4$ |
$120$ |
$100$ |
$100$ |
$100$ |
$100\%$ |
$1$ |
|
5.1.20.35a |
$5$ |
$20$ |
$1$ |
$20$ |
$35$ |
$[2]$ |
$[1]$ |
$\langle\frac{4}{5}\rangle$ |
$(4)$ |
$x^{20} + 5 b_{19} x^{19} + 5 b_{18} x^{18} + 5 b_{17} x^{17} + 5 a_{16} x^{16} + 5 d_{0} + 25 c_{20}$ |
$20$ |
$1056$ |
$500$ |
$500$ |
$500$ |
$100\%$ |
$1$ |
|
5.1.20.36a |
$5$ |
$20$ |
$1$ |
$20$ |
$36$ |
$[\frac{33}{16}]$ |
$[\frac{17}{16}]$ |
$\langle\frac{17}{20}\rangle$ |
$(\frac{17}{4})$ |
$x^{20} + 5 b_{19} x^{19} + 5 b_{18} x^{18} + 5 a_{17} x^{17} + 25 b_{21} x + 5 d_{0}$ |
$4$ |
$500$ |
$500$ |
$500$ |
$500$ |
$100\%$ |
$1$ |
|
5.1.20.37a |
$5$ |
$20$ |
$1$ |
$20$ |
$37$ |
$[\frac{17}{8}]$ |
$[\frac{9}{8}]$ |
$\langle\frac{9}{10}\rangle$ |
$(\frac{9}{2})$ |
$x^{20} + 5 b_{19} x^{19} + 5 a_{18} x^{18} + 25 b_{22} x^2 + 25 b_{21} x + 5 d_{0}$ |
$4$ |
$520$ |
$500$ |
$500$ |
$500$ |
$100\%$ |
$1$ |
|
5.1.20.38a |
$5$ |
$20$ |
$1$ |
$20$ |
$38$ |
$[\frac{35}{16}]$ |
$[\frac{19}{16}]$ |
$\langle\frac{19}{20}\rangle$ |
$(\frac{19}{4})$ |
$x^{20} + 5 a_{19} x^{19} + 25 b_{23} x^3 + 25 b_{22} x^2 + 25 b_{21} x + 5 d_{0}$ |
$4$ |
$500$ |
$500$ |
$500$ |
$500$ |
$100\%$ |
$1$ |
|
5.1.20.39a |
$5$ |
$20$ |
$1$ |
$20$ |
$39$ |
$[\frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle1\rangle$ |
$(5)$ |
$x^{20} + 25 c_{25} x^5 + 25 b_{24} x^4 + 25 b_{23} x^3 + 25 b_{22} x^2 + 25 b_{21} x + 5 d_{0}$ |
$20$ |
$1285$ |
$625$ |
$625$ |
$625$ |
$100\%$ |
$1$ |
|