Learn more

Refine search


Results (1-50 of 101 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass Num. Packets
3.18.1.0a $3$ $18$ $18$ $1$ $0$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x$ $18$ $1$ $1$ $1$
3.9.2.9a $3$ $18$ $9$ $2$ $9$ $[\ ]$ $[ ]$ $\langle \rangle$ $( )$ $x^2 + 3 d_{0}$ $18$ $2$ $1$
3.6.3.18a $3$ $18$ $6$ $3$ $18$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(\frac{1}{2})$ $x^3 + 3 a_{1} x + 3$ $6$ $129$ $728$
3.6.3.24a $3$ $18$ $6$ $3$ $24$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(1)$ $x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ $18$ $258$ $728$
3.6.3.30a $3$ $18$ $6$ $3$ $30$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(\frac{3}{2})$ $x^3 + 9 b_{4} x + 3$ $6$ $130$ $729$
3.3.6.18a $3$ $18$ $3$ $6$ $18$ $[\frac{5}{4}]$ $[\frac{1}{4}]$ $\langle\frac{1}{6}\rangle$ $(\frac{1}{2})$ $x^6 + 3 a_{1} x + 3 d_{0}$ $6$ $10$ $26$
3.3.6.21a $3$ $18$ $3$ $6$ $21$ $[\frac{3}{2}]$ $[\frac{1}{2}]$ $\langle\frac{1}{3}\rangle$ $(1)$ $x^6 + 3 c_{3} x^3 + 3 a_{2} x^2 + 3 d_{0}$ $18$ $30$ $26$
3.3.6.27a $3$ $18$ $3$ $6$ $27$ $[2]$ $[1]$ $\langle\frac{2}{3}\rangle$ $(2)$ $x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3 d_{0} + 9 c_{6}$ $18$ $496$ $702$
3.3.6.30a $3$ $18$ $3$ $6$ $30$ $[\frac{9}{4}]$ $[\frac{5}{4}]$ $\langle\frac{5}{6}\rangle$ $(\frac{5}{2})$ $x^6 + 3 a_{5} x^5 + 9 b_{7} x + 3 d_{0}$ $6$ $238$ $702$
3.3.6.33a $3$ $18$ $3$ $6$ $33$ $[\frac{5}{2}]$ $[\frac{3}{2}]$ $\langle1\rangle$ $(3)$ $x^6 + 9 c_{9} x^3 + 9 b_{8} x^2 + 9 b_{7} x + 3 d_{0}$ $18$ $509$ $729$
3.2.9.18a $3$ $18$ $2$ $9$ $18$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^9 + 3 a_{1} x + 3$ $2$ $5$ $8$
3.2.9.20a $3$ $18$ $2$ $9$ $20$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^9 + 3 a_{2} x^2 + 3$ $2$ $5$ $8$
3.2.9.24a $3$ $18$ $2$ $9$ $24$ $[\frac{3}{2}, \frac{3}{2}]$ $[\frac{1}{2}, \frac{1}{2}]$ $\langle\frac{1}{3}, \frac{4}{9}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ $2$ $39$ $72$
3.2.9.26a $3$ $18$ $2$ $9$ $26$ $[\frac{13}{8}, \frac{13}{8}]$ $[\frac{5}{8}, \frac{5}{8}]$ $\langle\frac{5}{12}, \frac{5}{9}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^9 + 3 a_{5} x^5 + 3$ $2$ $5$ $8$
3.2.9.26b $3$ $18$ $2$ $9$ $26$ $[\frac{3}{2}, \frac{5}{3}]$ $[\frac{1}{2}, \frac{2}{3}]$ $\langle\frac{1}{3}, \frac{5}{9}\rangle$ $(\frac{1}{2}, 1)$ $x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ $6$ $68$ $64$
3.2.9.30a $3$ $18$ $2$ $9$ $30$ $[\frac{15}{8}, \frac{15}{8}]$ $[\frac{7}{8}, \frac{7}{8}]$ $\langle\frac{7}{12}, \frac{7}{9}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ $2$ $39$ $72$
3.2.9.30b $3$ $18$ $2$ $9$ $30$ $[\frac{3}{2}, 2]$ $[\frac{1}{2}, 1]$ $\langle\frac{1}{3}, \frac{7}{9}\rangle$ $(\frac{1}{2}, 2)$ $x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ $6$ $588$ $576$
3.2.9.32a $3$ $18$ $2$ $9$ $32$ $[2, 2]$ $[1, 1]$ $\langle\frac{2}{3}, \frac{8}{9}\rangle$ $(1, 1)$ $x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ $18$ $73$ $72$
3.2.9.32b $3$ $18$ $2$ $9$ $32$ $[\frac{3}{2}, \frac{13}{6}]$ $[\frac{1}{2}, \frac{7}{6}]$ $\langle\frac{1}{3}, \frac{8}{9}\rangle$ $(\frac{1}{2}, \frac{5}{2})$ $x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ $2$ $294$ $576$
3.2.9.36a $3$ $18$ $2$ $9$ $36$ $[\frac{9}{4}, \frac{9}{4}]$ $[\frac{5}{4}, \frac{5}{4}]$ $\langle\frac{5}{6}, \frac{10}{9}\rangle$ $(\frac{5}{4}, \frac{5}{4})$ $x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $2$ $39$ $72$
3.2.9.36b $3$ $18$ $2$ $9$ $36$ $[\frac{3}{2}, \frac{5}{2}]$ $[\frac{1}{2}, \frac{3}{2}]$ $\langle\frac{1}{3}, \frac{10}{9}\rangle$ $(\frac{1}{2}, \frac{7}{2})$ $x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ $2$ $2610$ $5184$
3.2.9.36c $3$ $18$ $2$ $9$ $36$ $[2, \frac{7}{3}]$ $[1, \frac{4}{3}]$ $\langle\frac{2}{3}, \frac{10}{9}\rangle$ $(1, 2)$ $x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ $18$ $588$ $576$
3.2.9.38a $3$ $18$ $2$ $9$ $38$ $[\frac{19}{8}, \frac{19}{8}]$ $[\frac{11}{8}, \frac{11}{8}]$ $\langle\frac{11}{12}, \frac{11}{9}\rangle$ $(\frac{11}{8}, \frac{11}{8})$ $x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ $2$ $39$ $72$
3.2.9.38b $3$ $18$ $2$ $9$ $38$ $[\frac{3}{2}, \frac{8}{3}]$ $[\frac{1}{2}, \frac{5}{3}]$ $\langle\frac{1}{3}, \frac{11}{9}\rangle$ $(\frac{1}{2}, 4)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ $6$ $5220$ $5184$
3.2.9.38c $3$ $18$ $2$ $9$ $38$ $[2, \frac{5}{2}]$ $[1, \frac{3}{2}]$ $\langle\frac{2}{3}, \frac{11}{9}\rangle$ $(1, \frac{5}{2})$ $x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ $6$ $333$ $576$
3.2.9.40a $3$ $18$ $2$ $9$ $40$ $[\frac{3}{2}, \frac{17}{6}]$ $[\frac{1}{2}, \frac{11}{6}]$ $\langle\frac{1}{3}, \frac{4}{3}\rangle$ $(\frac{1}{2}, \frac{9}{2})$ $x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ $2$ $2943$ $5832$
3.2.9.42a $3$ $18$ $2$ $9$ $42$ $[2, \frac{17}{6}]$ $[1, \frac{11}{6}]$ $\langle\frac{2}{3}, \frac{13}{9}\rangle$ $(1, \frac{7}{2})$ $x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ $6$ $2610$ $5184$
3.2.9.42b $3$ $18$ $2$ $9$ $42$ $[\frac{5}{2}, \frac{8}{3}]$ $[\frac{3}{2}, \frac{5}{3}]$ $\langle1, \frac{13}{9}\rangle$ $(\frac{3}{2}, 2)$ $x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ $6$ $666$ $648$
3.2.9.44a $3$ $18$ $2$ $9$ $44$ $[2, 3]$ $[1, 2]$ $\langle\frac{2}{3}, \frac{14}{9}\rangle$ $(1, 4)$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ $18$ $5259$ $5184$
3.2.9.44b $3$ $18$ $2$ $9$ $44$ $[\frac{5}{2}, \frac{17}{6}]$ $[\frac{3}{2}, \frac{11}{6}]$ $\langle1, \frac{14}{9}\rangle$ $(\frac{3}{2}, \frac{5}{2})$ $x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ $2$ $333$ $648$
3.2.9.46a $3$ $18$ $2$ $9$ $46$ $[2, \frac{19}{6}]$ $[1, \frac{13}{6}]$ $\langle\frac{2}{3}, \frac{5}{3}\rangle$ $(1, \frac{9}{2})$ $x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ $6$ $2943$ $5832$
3.2.9.48a $3$ $18$ $2$ $9$ $48$ $[\frac{5}{2}, \frac{19}{6}]$ $[\frac{3}{2}, \frac{13}{6}]$ $\langle1, \frac{16}{9}\rangle$ $(\frac{3}{2}, \frac{7}{2})$ $x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ $2$ $2943$ $5832$
3.2.9.50a $3$ $18$ $2$ $9$ $50$ $[\frac{5}{2}, \frac{10}{3}]$ $[\frac{3}{2}, \frac{7}{3}]$ $\langle1, \frac{17}{9}\rangle$ $(\frac{3}{2}, 4)$ $x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $6$ $5886$ $5832$
3.2.9.52a $3$ $18$ $2$ $9$ $52$ $[\frac{5}{2}, \frac{7}{2}]$ $[\frac{3}{2}, \frac{5}{2}]$ $\langle1, 2\rangle$ $(\frac{3}{2}, \frac{9}{2})$ $x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ $2$ $3321$ $6561$
3.1.18.18a $3$ $18$ $1$ $18$ $18$ $[\frac{17}{16}, \frac{17}{16}]$ $[\frac{1}{16}, \frac{1}{16}]$ $\langle\frac{1}{24}, \frac{1}{18}\rangle$ $(\frac{1}{8}, \frac{1}{8})$ $x^{18} + 3 a_{1} x + 3 d_{0}$ $2$ $2$ $2$
3.1.18.19a $3$ $18$ $1$ $18$ $19$ $[\frac{9}{8}, \frac{9}{8}]$ $[\frac{1}{8}, \frac{1}{8}]$ $\langle\frac{1}{12}, \frac{1}{9}\rangle$ $(\frac{1}{4}, \frac{1}{4})$ $x^{18} + 3 a_{2} x^2 + 3 d_{0}$ $2$ $4$ $2$
3.1.18.21a $3$ $18$ $1$ $18$ $21$ $[\frac{5}{4}, \frac{5}{4}]$ $[\frac{1}{4}, \frac{1}{4}]$ $\langle\frac{1}{6}, \frac{2}{9}\rangle$ $(\frac{1}{2}, \frac{1}{2})$ $x^{18} + 3 a_{4} x^4 + 3 b_{3} x^3 + 3 d_{0}$ $2$ $8$ $6$
3.1.18.22a $3$ $18$ $1$ $18$ $22$ $[\frac{21}{16}, \frac{21}{16}]$ $[\frac{5}{16}, \frac{5}{16}]$ $\langle\frac{5}{24}, \frac{5}{18}\rangle$ $(\frac{5}{8}, \frac{5}{8})$ $x^{18} + 3 a_{5} x^5 + 3 d_{0}$ $2$ $2$ $2$
3.1.18.22b $3$ $18$ $1$ $18$ $22$ $[\frac{5}{4}, \frac{4}{3}]$ $[\frac{1}{4}, \frac{1}{3}]$ $\langle\frac{1}{6}, \frac{5}{18}\rangle$ $(\frac{1}{2}, 1)$ $x^{18} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3 d_{0}$ $6$ $8$ $4$
3.1.18.24a $3$ $18$ $1$ $18$ $24$ $[\frac{23}{16}, \frac{23}{16}]$ $[\frac{7}{16}, \frac{7}{16}]$ $\langle\frac{7}{24}, \frac{7}{18}\rangle$ $(\frac{7}{8}, \frac{7}{8})$ $x^{18} + 3 a_{7} x^7 + 3 b_{6} x^6 + 3 d_{0}$ $2$ $6$ $6$
3.1.18.24b $3$ $18$ $1$ $18$ $24$ $[\frac{5}{4}, \frac{3}{2}]$ $[\frac{1}{4}, \frac{1}{2}]$ $\langle\frac{1}{6}, \frac{7}{18}\rangle$ $(\frac{1}{2}, 2)$ $x^{18} + 3 c_{9} x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 3 d_{0}$ $6$ $24$ $12$
3.1.18.25a $3$ $18$ $1$ $18$ $25$ $[\frac{3}{2}, \frac{3}{2}]$ $[\frac{1}{2}, \frac{1}{2}]$ $\langle\frac{1}{3}, \frac{4}{9}\rangle$ $(1, 1)$ $x^{18} + 3 c_{9} x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 3 d_{0}$ $6$ $16$ $6$
3.1.18.25b $3$ $18$ $1$ $18$ $25$ $[\frac{5}{4}, \frac{19}{12}]$ $[\frac{1}{4}, \frac{7}{12}]$ $\langle\frac{1}{6}, \frac{4}{9}\rangle$ $(\frac{1}{2}, \frac{5}{2})$ $x^{18} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 a_{3} x^3 + 3 d_{0}$ $2$ $12$ $12$
3.1.18.27a $3$ $18$ $1$ $18$ $27$ $[\frac{13}{8}, \frac{13}{8}]$ $[\frac{5}{8}, \frac{5}{8}]$ $\langle\frac{5}{12}, \frac{5}{9}\rangle$ $(\frac{5}{4}, \frac{5}{4})$ $x^{18} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 d_{0}$ $2$ $8$ $6$
3.1.18.27b $3$ $18$ $1$ $18$ $27$ $[\frac{5}{4}, \frac{7}{4}]$ $[\frac{1}{4}, \frac{3}{4}]$ $\langle\frac{1}{6}, \frac{5}{9}\rangle$ $(\frac{1}{2}, \frac{7}{2})$ $x^{18} + 3 b_{13} x^{13} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 a_{3} x^3 + 3 d_{0}$ $2$ $36$ $36$
3.1.18.27c $3$ $18$ $1$ $18$ $27$ $[\frac{3}{2}, \frac{5}{3}]$ $[\frac{1}{2}, \frac{2}{3}]$ $\langle\frac{1}{3}, \frac{5}{9}\rangle$ $(1, 2)$ $x^{18} + 3 c_{12} x^{12} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 c_{9} x^9 + 3 a_{6} x^6 + 3 d_{0}$ $18$ $32$ $12$
3.1.18.28a $3$ $18$ $1$ $18$ $28$ $[\frac{27}{16}, \frac{27}{16}]$ $[\frac{11}{16}, \frac{11}{16}]$ $\langle\frac{11}{24}, \frac{11}{18}\rangle$ $(\frac{11}{8}, \frac{11}{8})$ $x^{18} + 3 b_{12} x^{12} + 3 a_{11} x^{11} + 3 d_{0}$ $2$ $6$ $6$
3.1.18.28b $3$ $18$ $1$ $18$ $28$ $[\frac{5}{4}, \frac{11}{6}]$ $[\frac{1}{4}, \frac{5}{6}]$ $\langle\frac{1}{6}, \frac{11}{18}\rangle$ $(\frac{1}{2}, 4)$ $x^{18} + 3 c_{15} x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 3 a_{3} x^3 + 3 d_{0}$ $6$ $72$ $36$
3.1.18.28c $3$ $18$ $1$ $18$ $28$ $[\frac{3}{2}, \frac{7}{4}]$ $[\frac{1}{2}, \frac{3}{4}]$ $\langle\frac{1}{3}, \frac{11}{18}\rangle$ $(1, \frac{5}{2})$ $x^{18} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 3 c_{9} x^9 + 3 a_{6} x^6 + 3 d_{0}$ $6$ $12$ $12$
3.1.18.30a $3$ $18$ $1$ $18$ $30$ $[\frac{29}{16}, \frac{29}{16}]$ $[\frac{13}{16}, \frac{13}{16}]$ $\langle\frac{13}{24}, \frac{13}{18}\rangle$ $(\frac{13}{8}, \frac{13}{8})$ $x^{18} + 3 b_{14} x^{14} + 3 a_{13} x^{13} + 3 b_{12} x^{12} + 3 d_{0}$ $2$ $18$ $18$
Next   displayed columns for results