Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
3.18.1.0a |
$3$ |
$18$ |
$18$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$18$ |
$1$ |
$1$ |
$1/18$ |
$1/18$ |
$100\%$ |
$0$ |
$1$ |
3.9.2.9a |
$3$ |
$18$ |
$9$ |
$2$ |
$9$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + 3 d_{0}$ |
$18$ |
$2$ |
$1$ |
$1/9$ |
$1/9$ |
$100\%$ |
$0$ |
|
3.6.3.18a |
$3$ |
$18$ |
$6$ |
$3$ |
$18$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{1}{2})$ |
$x^3 + 3 a_{1} x + 3$ |
$6$ |
$129$ |
$728$ |
$364/3$ |
$364/3$ |
$100\%$ |
$1$ |
|
3.6.3.24a |
$3$ |
$18$ |
$6$ |
$3$ |
$24$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(1)$ |
$x^3 + 3 a_{2} x^2 + 9 c_{3} + 3$ |
$18$ |
$258$ |
$728$ |
$364/3$ |
$364/3$ |
$100\%$ |
$1$ |
|
3.6.3.30a |
$3$ |
$18$ |
$6$ |
$3$ |
$30$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(\frac{3}{2})$ |
$x^3 + 9 b_{4} x + 3$ |
$6$ |
$130$ |
$729$ |
$243/2$ |
$243/2$ |
$100\%$ |
$1$ |
|
3.3.6.18a |
$3$ |
$18$ |
$3$ |
$6$ |
$18$ |
$[\frac{5}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{6}\rangle$ |
$(\frac{1}{2})$ |
$x^6 + 3 a_{1} x + 3 d_{0}$ |
$6$ |
$10$ |
$26$ |
$26/3$ |
$26/3$ |
$100\%$ |
$1$ |
|
3.3.6.21a |
$3$ |
$18$ |
$3$ |
$6$ |
$21$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(1)$ |
$x^6 + 3 c_{3} x^3 + 3 a_{2} x^2 + 3 d_{0}$ |
$18$ |
$30$ |
$26$ |
$26/3$ |
$26/3$ |
$100\%$ |
$1$ |
|
3.3.6.27a |
$3$ |
$18$ |
$3$ |
$6$ |
$27$ |
$[2]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(2)$ |
$x^6 + 3 b_{5} x^5 + 3 a_{4} x^4 + 3 d_{0} + 9 c_{6}$ |
$18$ |
$496$ |
$702$ |
$234$ |
$234$ |
$100\%$ |
$1$ |
|
3.3.6.30a |
$3$ |
$18$ |
$3$ |
$6$ |
$30$ |
$[\frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle\frac{5}{6}\rangle$ |
$(\frac{5}{2})$ |
$x^6 + 3 a_{5} x^5 + 9 b_{7} x + 3 d_{0}$ |
$6$ |
$238$ |
$702$ |
$234$ |
$234$ |
$100\%$ |
$1$ |
|
3.3.6.33a |
$3$ |
$18$ |
$3$ |
$6$ |
$33$ |
$[\frac{5}{2}]$ |
$[\frac{3}{2}]$ |
$\langle1\rangle$ |
$(3)$ |
$x^6 + 9 c_{9} x^3 + 9 b_{8} x^2 + 9 b_{7} x + 3 d_{0}$ |
$18$ |
$509$ |
$729$ |
$243$ |
$243$ |
$100\%$ |
$1$ |
|
3.2.9.18a |
$3$ |
$18$ |
$2$ |
$9$ |
$18$ |
$[\frac{9}{8}, \frac{9}{8}]$ |
$[\frac{1}{8}, \frac{1}{8}]$ |
$\langle\frac{1}{12}, \frac{1}{9}\rangle$ |
$(\frac{1}{8}, \frac{1}{8})$ |
$x^9 + 3 a_{1} x + 3$ |
$2$ |
$5$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
3.2.9.20a |
$3$ |
$18$ |
$2$ |
$9$ |
$20$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$[\frac{1}{4}, \frac{1}{4}]$ |
$\langle\frac{1}{6}, \frac{2}{9}\rangle$ |
$(\frac{1}{4}, \frac{1}{4})$ |
$x^9 + 3 a_{2} x^2 + 3$ |
$2$ |
$5$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
3.2.9.24a |
$3$ |
$18$ |
$2$ |
$9$ |
$24$ |
$[\frac{3}{2}, \frac{3}{2}]$ |
$[\frac{1}{2}, \frac{1}{2}]$ |
$\langle\frac{1}{3}, \frac{4}{9}\rangle$ |
$(\frac{1}{2}, \frac{1}{2})$ |
$x^9 + 3 a_{4} x^4 + 3 b_{3} x^3 + 3$ |
$2$ |
$39$ |
$72$ |
$36$ |
$36$ |
$100\%$ |
$1$ |
|
3.2.9.26a |
$3$ |
$18$ |
$2$ |
$9$ |
$26$ |
$[\frac{13}{8}, \frac{13}{8}]$ |
$[\frac{5}{8}, \frac{5}{8}]$ |
$\langle\frac{5}{12}, \frac{5}{9}\rangle$ |
$(\frac{5}{8}, \frac{5}{8})$ |
$x^9 + 3 a_{5} x^5 + 3$ |
$2$ |
$5$ |
$8$ |
$4$ |
$4$ |
$100\%$ |
$1$ |
|
3.2.9.26b |
$3$ |
$18$ |
$2$ |
$9$ |
$26$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$[\frac{1}{2}, \frac{2}{3}]$ |
$\langle\frac{1}{3}, \frac{5}{9}\rangle$ |
$(\frac{1}{2}, 1)$ |
$x^9 + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3$ |
$6$ |
$68$ |
$64$ |
$32$ |
$32$ |
$100\%$ |
$2$ |
|
3.2.9.30a |
$3$ |
$18$ |
$2$ |
$9$ |
$30$ |
$[\frac{15}{8}, \frac{15}{8}]$ |
$[\frac{7}{8}, \frac{7}{8}]$ |
$\langle\frac{7}{12}, \frac{7}{9}\rangle$ |
$(\frac{7}{8}, \frac{7}{8})$ |
$x^9 + 3 a_{7} x^7 + 3 b_{6} x^6 + 3$ |
$2$ |
$39$ |
$72$ |
$36$ |
$36$ |
$100\%$ |
$1$ |
|
3.2.9.30b |
$3$ |
$18$ |
$2$ |
$9$ |
$30$ |
$[\frac{3}{2}, 2]$ |
$[\frac{1}{2}, 1]$ |
$\langle\frac{1}{3}, \frac{7}{9}\rangle$ |
$(\frac{1}{2}, 2)$ |
$x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 9 c_{9} + 3$ |
$6$ |
$588$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
3.2.9.32a |
$3$ |
$18$ |
$2$ |
$9$ |
$32$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{2}{3}, \frac{8}{9}\rangle$ |
$(1, 1)$ |
$x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 9 c_{9} + 3$ |
$18$ |
$73$ |
$72$ |
$36$ |
$36$ |
$100\%$ |
$1$ |
|
3.2.9.32b |
$3$ |
$18$ |
$2$ |
$9$ |
$32$ |
$[\frac{3}{2}, \frac{13}{6}]$ |
$[\frac{1}{2}, \frac{7}{6}]$ |
$\langle\frac{1}{3}, \frac{8}{9}\rangle$ |
$(\frac{1}{2}, \frac{5}{2})$ |
$x^9 + 3 a_{8} x^8 + 3 a_{3} x^3 + 9 b_{10} x + 3$ |
$2$ |
$294$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
3.2.9.36a |
$3$ |
$18$ |
$2$ |
$9$ |
$36$ |
$[\frac{9}{4}, \frac{9}{4}]$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$\langle\frac{5}{6}, \frac{10}{9}\rangle$ |
$(\frac{5}{4}, \frac{5}{4})$ |
$x^9 + 9 b_{11} x^2 + 9 a_{10} x + 3$ |
$2$ |
$39$ |
$72$ |
$36$ |
$36$ |
$100\%$ |
$1$ |
|
3.2.9.36b |
$3$ |
$18$ |
$2$ |
$9$ |
$36$ |
$[\frac{3}{2}, \frac{5}{2}]$ |
$[\frac{1}{2}, \frac{3}{2}]$ |
$\langle\frac{1}{3}, \frac{10}{9}\rangle$ |
$(\frac{1}{2}, \frac{7}{2})$ |
$x^9 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 3$ |
$2$ |
$2610$ |
$5184$ |
$2592$ |
$2592$ |
$100\%$ |
$2$ |
|
3.2.9.36c |
$3$ |
$18$ |
$2$ |
$9$ |
$36$ |
$[2, \frac{7}{3}]$ |
$[1, \frac{4}{3}]$ |
$\langle\frac{2}{3}, \frac{10}{9}\rangle$ |
$(1, 2)$ |
$x^9 + 3 a_{6} x^6 + 9 c_{12} x^3 + 9 b_{11} x^2 + 9 a_{10} x + 9 c_{9} + 3$ |
$18$ |
$588$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
3.2.9.38a |
$3$ |
$18$ |
$2$ |
$9$ |
$38$ |
$[\frac{19}{8}, \frac{19}{8}]$ |
$[\frac{11}{8}, \frac{11}{8}]$ |
$\langle\frac{11}{12}, \frac{11}{9}\rangle$ |
$(\frac{11}{8}, \frac{11}{8})$ |
$x^9 + 9 b_{12} x^3 + 9 a_{11} x^2 + 3$ |
$2$ |
$39$ |
$72$ |
$36$ |
$36$ |
$100\%$ |
$1$ |
|
3.2.9.38b |
$3$ |
$18$ |
$2$ |
$9$ |
$38$ |
$[\frac{3}{2}, \frac{8}{3}]$ |
$[\frac{1}{2}, \frac{5}{3}]$ |
$\langle\frac{1}{3}, \frac{11}{9}\rangle$ |
$(\frac{1}{2}, 4)$ |
$x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 9 a_{11} x^2 + 3$ |
$6$ |
$5220$ |
$5184$ |
$2592$ |
$2592$ |
$100\%$ |
$2$ |
|
3.2.9.38c |
$3$ |
$18$ |
$2$ |
$9$ |
$38$ |
$[2, \frac{5}{2}]$ |
$[1, \frac{3}{2}]$ |
$\langle\frac{2}{3}, \frac{11}{9}\rangle$ |
$(1, \frac{5}{2})$ |
$x^9 + 3 a_{6} x^6 + 9 b_{13} x^4 + 9 a_{11} x^2 + 9 c_{9} + 3$ |
$6$ |
$333$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
3.2.9.40a |
$3$ |
$18$ |
$2$ |
$9$ |
$40$ |
$[\frac{3}{2}, \frac{17}{6}]$ |
$[\frac{1}{2}, \frac{11}{6}]$ |
$\langle\frac{1}{3}, \frac{4}{3}\rangle$ |
$(\frac{1}{2}, \frac{9}{2})$ |
$x^9 + 9 b_{16} x^7 + 9 b_{14} x^5 + 9 b_{13} x^4 + 3 a_{3} x^3 + 3$ |
$2$ |
$2943$ |
$5832$ |
$2916$ |
$2916$ |
$100\%$ |
$2$ |
|
3.2.9.42a |
$3$ |
$18$ |
$2$ |
$9$ |
$42$ |
$[2, \frac{17}{6}]$ |
$[1, \frac{11}{6}]$ |
$\langle\frac{2}{3}, \frac{13}{9}\rangle$ |
$(1, \frac{7}{2})$ |
$x^9 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 c_{9} + 3$ |
$6$ |
$2610$ |
$5184$ |
$2592$ |
$2592$ |
$100\%$ |
$2$ |
|
3.2.9.42b |
$3$ |
$18$ |
$2$ |
$9$ |
$42$ |
$[\frac{5}{2}, \frac{8}{3}]$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$\langle1, \frac{13}{9}\rangle$ |
$(\frac{3}{2}, 2)$ |
$x^9 + 9 c_{15} x^6 + 9 b_{14} x^5 + 9 a_{13} x^4 + 9 b_{12} x^3 + 3$ |
$6$ |
$666$ |
$648$ |
$324$ |
$324$ |
$100\%$ |
$2$ |
|
3.2.9.44a |
$3$ |
$18$ |
$2$ |
$9$ |
$44$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{2}{3}, \frac{14}{9}\rangle$ |
$(1, 4)$ |
$x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 9 a_{14} x^5 + 9 c_{9} + 27 c_{18} + 3$ |
$18$ |
$5259$ |
$5184$ |
$2592$ |
$2592$ |
$100\%$ |
$2$ |
|
3.2.9.44b |
$3$ |
$18$ |
$2$ |
$9$ |
$44$ |
$[\frac{5}{2}, \frac{17}{6}]$ |
$[\frac{3}{2}, \frac{11}{6}]$ |
$\langle1, \frac{14}{9}\rangle$ |
$(\frac{3}{2}, \frac{5}{2})$ |
$x^9 + 9 b_{16} x^7 + 9 a_{14} x^5 + 9 b_{12} x^3 + 3$ |
$2$ |
$333$ |
$648$ |
$324$ |
$324$ |
$100\%$ |
$2$ |
|
3.2.9.46a |
$3$ |
$18$ |
$2$ |
$9$ |
$46$ |
$[2, \frac{19}{6}]$ |
$[1, \frac{13}{6}]$ |
$\langle\frac{2}{3}, \frac{5}{3}\rangle$ |
$(1, \frac{9}{2})$ |
$x^9 + 9 b_{17} x^8 + 9 b_{16} x^7 + 3 a_{6} x^6 + 27 b_{19} x + 9 c_{9} + 3$ |
$6$ |
$2943$ |
$5832$ |
$2916$ |
$2916$ |
$100\%$ |
$2$ |
|
3.2.9.48a |
$3$ |
$18$ |
$2$ |
$9$ |
$48$ |
$[\frac{5}{2}, \frac{19}{6}]$ |
$[\frac{3}{2}, \frac{13}{6}]$ |
$\langle1, \frac{16}{9}\rangle$ |
$(\frac{3}{2}, \frac{7}{2})$ |
$x^9 + 9 b_{17} x^8 + 9 a_{16} x^7 + 9 b_{12} x^3 + 27 b_{19} x + 3$ |
$2$ |
$2943$ |
$5832$ |
$2916$ |
$2916$ |
$100\%$ |
$2$ |
|
3.2.9.50a |
$3$ |
$18$ |
$2$ |
$9$ |
$50$ |
$[\frac{5}{2}, \frac{10}{3}]$ |
$[\frac{3}{2}, \frac{7}{3}]$ |
$\langle1, \frac{17}{9}\rangle$ |
$(\frac{3}{2}, 4)$ |
$x^9 + 9 a_{17} x^8 + (9 b_{12} + 27 c_{21}) x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ |
$6$ |
$5886$ |
$5832$ |
$2916$ |
$2916$ |
$100\%$ |
$2$ |
|
3.2.9.52a |
$3$ |
$18$ |
$2$ |
$9$ |
$52$ |
$[\frac{5}{2}, \frac{7}{2}]$ |
$[\frac{3}{2}, \frac{5}{2}]$ |
$\langle1, 2\rangle$ |
$(\frac{3}{2}, \frac{9}{2})$ |
$x^9 + 27 b_{22} x^4 + 9 b_{12} x^3 + 27 b_{20} x^2 + 27 b_{19} x + 3$ |
$2$ |
$3321$ |
$6561$ |
$6561/2$ |
$6561/2$ |
$100\%$ |
$2$ |
|
3.1.18.18a |
$3$ |
$18$ |
$1$ |
$18$ |
$18$ |
$[\frac{17}{16}, \frac{17}{16}]$ |
$[\frac{1}{16}, \frac{1}{16}]$ |
$\langle\frac{1}{24}, \frac{1}{18}\rangle$ |
$(\frac{1}{8}, \frac{1}{8})$ |
$x^{18} + 3 a_{1} x + 3 d_{0}$ |
$2$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
|
3.1.18.19a |
$3$ |
$18$ |
$1$ |
$18$ |
$19$ |
$[\frac{9}{8}, \frac{9}{8}]$ |
$[\frac{1}{8}, \frac{1}{8}]$ |
$\langle\frac{1}{12}, \frac{1}{9}\rangle$ |
$(\frac{1}{4}, \frac{1}{4})$ |
$x^{18} + 3 a_{2} x^2 + 3 d_{0}$ |
$2$ |
$4$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
|
3.1.18.21a |
$3$ |
$18$ |
$1$ |
$18$ |
$21$ |
$[\frac{5}{4}, \frac{5}{4}]$ |
$[\frac{1}{4}, \frac{1}{4}]$ |
$\langle\frac{1}{6}, \frac{2}{9}\rangle$ |
$(\frac{1}{2}, \frac{1}{2})$ |
$x^{18} + 3 a_{4} x^4 + 3 b_{3} x^3 + 3 d_{0}$ |
$2$ |
$8$ |
$6$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
3.1.18.22a |
$3$ |
$18$ |
$1$ |
$18$ |
$22$ |
$[\frac{21}{16}, \frac{21}{16}]$ |
$[\frac{5}{16}, \frac{5}{16}]$ |
$\langle\frac{5}{24}, \frac{5}{18}\rangle$ |
$(\frac{5}{8}, \frac{5}{8})$ |
$x^{18} + 3 a_{5} x^5 + 3 d_{0}$ |
$2$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
|
3.1.18.22b |
$3$ |
$18$ |
$1$ |
$18$ |
$22$ |
$[\frac{5}{4}, \frac{4}{3}]$ |
$[\frac{1}{4}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{5}{18}\rangle$ |
$(\frac{1}{2}, 1)$ |
$x^{18} + 3 c_{6} x^6 + 3 a_{5} x^5 + 3 a_{3} x^3 + 3 d_{0}$ |
$6$ |
$8$ |
$4$ |
$4$ |
$4$ |
$100\%$ |
$2$ |
|
3.1.18.24a |
$3$ |
$18$ |
$1$ |
$18$ |
$24$ |
$[\frac{23}{16}, \frac{23}{16}]$ |
$[\frac{7}{16}, \frac{7}{16}]$ |
$\langle\frac{7}{24}, \frac{7}{18}\rangle$ |
$(\frac{7}{8}, \frac{7}{8})$ |
$x^{18} + 3 a_{7} x^7 + 3 b_{6} x^6 + 3 d_{0}$ |
$2$ |
$6$ |
$6$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
3.1.18.24b |
$3$ |
$18$ |
$1$ |
$18$ |
$24$ |
$[\frac{5}{4}, \frac{3}{2}]$ |
$[\frac{1}{4}, \frac{1}{2}]$ |
$\langle\frac{1}{6}, \frac{7}{18}\rangle$ |
$(\frac{1}{2}, 2)$ |
$x^{18} + 3 c_{9} x^9 + 3 b_{8} x^8 + 3 a_{7} x^7 + 3 a_{3} x^3 + 3 d_{0}$ |
$6$ |
$24$ |
$12$ |
$12$ |
$12$ |
$100\%$ |
$2$ |
|
3.1.18.25a |
$3$ |
$18$ |
$1$ |
$18$ |
$25$ |
$[\frac{3}{2}, \frac{3}{2}]$ |
$[\frac{1}{2}, \frac{1}{2}]$ |
$\langle\frac{1}{3}, \frac{4}{9}\rangle$ |
$(1, 1)$ |
$x^{18} + 3 c_{9} x^9 + 3 a_{8} x^8 + 3 b_{6} x^6 + 3 d_{0}$ |
$6$ |
$16$ |
$6$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
3.1.18.25b |
$3$ |
$18$ |
$1$ |
$18$ |
$25$ |
$[\frac{5}{4}, \frac{19}{12}]$ |
$[\frac{1}{4}, \frac{7}{12}]$ |
$\langle\frac{1}{6}, \frac{4}{9}\rangle$ |
$(\frac{1}{2}, \frac{5}{2})$ |
$x^{18} + 3 b_{10} x^{10} + 3 a_{8} x^8 + 3 a_{3} x^3 + 3 d_{0}$ |
$2$ |
$12$ |
$12$ |
$12$ |
$12$ |
$100\%$ |
$2$ |
|
3.1.18.27a |
$3$ |
$18$ |
$1$ |
$18$ |
$27$ |
$[\frac{13}{8}, \frac{13}{8}]$ |
$[\frac{5}{8}, \frac{5}{8}]$ |
$\langle\frac{5}{12}, \frac{5}{9}\rangle$ |
$(\frac{5}{4}, \frac{5}{4})$ |
$x^{18} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 d_{0}$ |
$2$ |
$8$ |
$6$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
3.1.18.27b |
$3$ |
$18$ |
$1$ |
$18$ |
$27$ |
$[\frac{5}{4}, \frac{7}{4}]$ |
$[\frac{1}{4}, \frac{3}{4}]$ |
$\langle\frac{1}{6}, \frac{5}{9}\rangle$ |
$(\frac{1}{2}, \frac{7}{2})$ |
$x^{18} + 3 b_{13} x^{13} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 a_{3} x^3 + 3 d_{0}$ |
$2$ |
$36$ |
$36$ |
$36$ |
$36$ |
$100\%$ |
$2$ |
|
3.1.18.27c |
$3$ |
$18$ |
$1$ |
$18$ |
$27$ |
$[\frac{3}{2}, \frac{5}{3}]$ |
$[\frac{1}{2}, \frac{2}{3}]$ |
$\langle\frac{1}{3}, \frac{5}{9}\rangle$ |
$(1, 2)$ |
$x^{18} + 3 c_{12} x^{12} + 3 b_{11} x^{11} + 3 a_{10} x^{10} + 3 c_{9} x^9 + 3 a_{6} x^6 + 3 d_{0}$ |
$18$ |
$32$ |
$12$ |
$12$ |
$12$ |
$100\%$ |
$2$ |
|
3.1.18.28a |
$3$ |
$18$ |
$1$ |
$18$ |
$28$ |
$[\frac{27}{16}, \frac{27}{16}]$ |
$[\frac{11}{16}, \frac{11}{16}]$ |
$\langle\frac{11}{24}, \frac{11}{18}\rangle$ |
$(\frac{11}{8}, \frac{11}{8})$ |
$x^{18} + 3 b_{12} x^{12} + 3 a_{11} x^{11} + 3 d_{0}$ |
$2$ |
$6$ |
$6$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
3.1.18.28b |
$3$ |
$18$ |
$1$ |
$18$ |
$28$ |
$[\frac{5}{4}, \frac{11}{6}]$ |
$[\frac{1}{4}, \frac{5}{6}]$ |
$\langle\frac{1}{6}, \frac{11}{18}\rangle$ |
$(\frac{1}{2}, 4)$ |
$x^{18} + 3 c_{15} x^{15} + 3 b_{14} x^{14} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 3 a_{3} x^3 + 3 d_{0}$ |
$6$ |
$72$ |
$36$ |
$36$ |
$36$ |
$100\%$ |
$2$ |
|
3.1.18.28c |
$3$ |
$18$ |
$1$ |
$18$ |
$28$ |
$[\frac{3}{2}, \frac{7}{4}]$ |
$[\frac{1}{2}, \frac{3}{4}]$ |
$\langle\frac{1}{3}, \frac{11}{18}\rangle$ |
$(1, \frac{5}{2})$ |
$x^{18} + 3 b_{13} x^{13} + 3 a_{11} x^{11} + 3 c_{9} x^9 + 3 a_{6} x^6 + 3 d_{0}$ |
$6$ |
$12$ |
$12$ |
$12$ |
$12$ |
$100\%$ |
$2$ |
|
3.1.18.30a |
$3$ |
$18$ |
$1$ |
$18$ |
$30$ |
$[\frac{29}{16}, \frac{29}{16}]$ |
$[\frac{13}{16}, \frac{13}{16}]$ |
$\langle\frac{13}{24}, \frac{13}{18}\rangle$ |
$(\frac{13}{8}, \frac{13}{8})$ |
$x^{18} + 3 b_{14} x^{14} + 3 a_{13} x^{13} + 3 b_{12} x^{12} + 3 d_{0}$ |
$2$ |
$18$ |
$18$ |
$18$ |
$18$ |
$100\%$ |
$1$ |
|