Label |
$p$ |
$n$ |
$f$ |
$e$ |
$c$ |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
Num. Packets |
2.16.1.0a |
$2$ |
$16$ |
$16$ |
$1$ |
$0$ |
$[\ ]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$16$ |
$1$ |
$1$ |
$1/16$ |
$1/16$ |
$100\%$ |
$0$ |
$1$ |
2.8.2.16a |
$2$ |
$16$ |
$8$ |
$2$ |
$16$ |
$[2]$ |
$[1]$ |
$\langle\frac{1}{2}\rangle$ |
$(1)$ |
$x^2 + 2 a_{1} x + 4 c_{2} + 2$ |
$16$ |
$70$ |
$255$ |
$255/8$ |
$255/8$ |
$100\%$ |
$1$ |
|
2.8.2.24a |
$2$ |
$16$ |
$8$ |
$2$ |
$24$ |
$[3]$ |
$[2]$ |
$\langle1\rangle$ |
$(2)$ |
$x^2 + 4 b_{3} x + 8 c_{4} + 2$ |
$16$ |
$72$ |
$256$ |
$32$ |
$32$ |
$100\%$ |
$1$ |
|
2.4.4.16a |
$2$ |
$16$ |
$4$ |
$4$ |
$16$ |
$[\frac{4}{3}, \frac{4}{3}]$ |
$[\frac{1}{3}, \frac{1}{3}]$ |
$\langle\frac{1}{6}, \frac{1}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3})$ |
$x^4 + 2 a_{1} x + 2$ |
$4$ |
$5$ |
$15$ |
$15/4$ |
$15/4$ |
$100\%$ |
$1$ |
$5$ |
2.4.4.24a |
$2$ |
$16$ |
$4$ |
$4$ |
$24$ |
$[2, 2]$ |
$[1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
$(1, 1)$ |
$x^4 + 2 a_{3} x^3 + 2 b_{2} x^2 + 4 c_{4} + 2$ |
$16$ |
$123$ |
$240$ |
$60$ |
$60$ |
$100\%$ |
$1$ |
|
2.4.4.32a |
$2$ |
$16$ |
$4$ |
$4$ |
$32$ |
$[\frac{8}{3}, \frac{8}{3}]$ |
$[\frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{5}{6}, \frac{5}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3})$ |
$x^4 + 4 b_{6} x^2 + 4 a_{5} x + 2$ |
$4$ |
$64$ |
$240$ |
$60$ |
$60$ |
$100\%$ |
$1$ |
|
2.4.4.32b |
$2$ |
$16$ |
$4$ |
$4$ |
$32$ |
$[2, 3]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + 4 b_{7} x^3 + 2 a_{2} x^2 + 4 a_{5} x + 4 c_{4} + 8 c_{8} + 2$ |
$16$ |
$1942$ |
$3600$ |
$900$ |
$900$ |
$100\%$ |
$2$ |
|
2.4.4.36a |
$2$ |
$16$ |
$4$ |
$4$ |
$36$ |
$[2, \frac{7}{2}]$ |
$[1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}\rangle$ |
$(1, 4)$ |
$x^4 + 4 b_{7} x^3 + (2 a_{2} + 8 c_{10}) x^2 + 8 b_{9} x + 4 c_{4} + 2$ |
$16$ |
$1948$ |
$3840$ |
$960$ |
$960$ |
$100\%$ |
$2$ |
|
2.4.4.40a |
$2$ |
$16$ |
$4$ |
$4$ |
$40$ |
$[3, \frac{7}{2}]$ |
$[2, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}\rangle$ |
$(2, 3)$ |
$x^4 + 4 a_{7} x^3 + (4 b_{6} + 8 c_{10}) x^2 + 8 b_{9} x + 8 c_{8} + 2$ |
$16$ |
$1948$ |
$3840$ |
$960$ |
$960$ |
$100\%$ |
$2$ |
|
2.4.4.44a |
$2$ |
$16$ |
$4$ |
$4$ |
$44$ |
$[3, 4]$ |
$[2, 3]$ |
$\langle1, 2\rangle$ |
$(2, 4)$ |
$x^4 + 8 b_{11} x^3 + 4 b_{6} x^2 + 8 b_{9} x + 8 c_{8} + 16 c_{12} + 2$ |
$16$ |
$2158$ |
$4096$ |
$1024$ |
$1024$ |
$100\%$ |
$2$ |
|
2.2.8.16a |
$2$ |
$16$ |
$2$ |
$8$ |
$16$ |
$[\frac{8}{7}, \frac{8}{7}, \frac{8}{7}]$ |
$[\frac{1}{7}, \frac{1}{7}, \frac{1}{7}]$ |
$\langle\frac{1}{14}, \frac{3}{28}, \frac{1}{8}\rangle$ |
$(\frac{1}{7}, \frac{1}{7}, \frac{1}{7})$ |
$x^8 + 2 a_{1} x + 2$ |
$2$ |
$2$ |
$3$ |
$3/2$ |
$3/2$ |
$100\%$ |
$1$ |
|
2.2.8.20a |
$2$ |
$16$ |
$2$ |
$8$ |
$20$ |
$[\frac{10}{7}, \frac{10}{7}, \frac{10}{7}]$ |
$[\frac{3}{7}, \frac{3}{7}, \frac{3}{7}]$ |
$\langle\frac{3}{14}, \frac{9}{28}, \frac{3}{8}\rangle$ |
$(\frac{3}{7}, \frac{3}{7}, \frac{3}{7})$ |
$x^8 + 2 a_{3} x^3 + 2$ |
$2$ |
$2$ |
$3$ |
$3/2$ |
$3/2$ |
$100\%$ |
$1$ |
|
2.2.8.20b |
$2$ |
$16$ |
$2$ |
$8$ |
$20$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{3}{2}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{1}{2}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{3}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 1)$ |
$x^8 + 2 c_{4} x^4 + 2 a_{3} x^3 + 2 a_{2} x^2 + 2$ |
$4$ |
$10$ |
$9$ |
$9/2$ |
$9/2$ |
$100\%$ |
$2$ |
|
2.2.8.24a |
$2$ |
$16$ |
$2$ |
$8$ |
$24$ |
$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]$ |
$[\frac{5}{7}, \frac{5}{7}, \frac{5}{7}]$ |
$\langle\frac{5}{14}, \frac{15}{28}, \frac{5}{8}\rangle$ |
$(\frac{5}{7}, \frac{5}{7}, \frac{5}{7})$ |
$x^8 + 2 a_{5} x^5 + 2 b_{4} x^4 + 2$ |
$2$ |
$7$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
2.2.8.24b |
$2$ |
$16$ |
$2$ |
$8$ |
$24$ |
$[\frac{4}{3}, \frac{4}{3}, 2]$ |
$[\frac{1}{3}, \frac{1}{3}, 1]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 3)$ |
$x^8 + 2 b_{7} x^7 + 2 a_{5} x^5 + 2 a_{2} x^2 + 4 c_{8} + 2$ |
$4$ |
$38$ |
$36$ |
$18$ |
$18$ |
$100\%$ |
$2$ |
|
2.2.8.28a |
$2$ |
$16$ |
$2$ |
$8$ |
$28$ |
$[2, 2, 2]$ |
$[1, 1, 1]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}\rangle$ |
$(1, 1, 1)$ |
$x^8 + 2 a_{7} x^7 + 2 b_{6} x^6 + 2 b_{4} x^4 + 4 c_{8} + 2$ |
$8$ |
$45$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
$33$ |
2.2.8.28b |
$2$ |
$16$ |
$2$ |
$8$ |
$28$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{5}{2}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{3}{2}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{7}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 5)$ |
$x^8 + 2 a_{7} x^7 + 4 c_{12} x^4 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 b_{9} x + 2$ |
$4$ |
$148$ |
$144$ |
$72$ |
$72$ |
$100\%$ |
$2$ |
|
2.2.8.32a |
$2$ |
$16$ |
$2$ |
$8$ |
$32$ |
$[\frac{16}{7}, \frac{16}{7}, \frac{16}{7}]$ |
$[\frac{9}{7}, \frac{9}{7}, \frac{9}{7}]$ |
$\langle\frac{9}{14}, \frac{27}{28}, \frac{9}{8}\rangle$ |
$(\frac{9}{7}, \frac{9}{7}, \frac{9}{7})$ |
$x^8 + 4 b_{10} x^2 + 4 a_{9} x + 2$ |
$2$ |
$7$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
|
2.2.8.32b |
$2$ |
$16$ |
$2$ |
$8$ |
$32$ |
$[\frac{4}{3}, \frac{4}{3}, 3]$ |
$[\frac{1}{3}, \frac{1}{3}, 2]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{9}{8}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 7)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + 2 a_{2} x^2 + 4 a_{9} x + 8 c_{16} + 2$ |
$4$ |
$584$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
2.2.8.32c |
$2$ |
$16$ |
$2$ |
$8$ |
$32$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 1, \frac{3}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
$(1, 1, 3)$ |
$x^8 + 2 a_{6} x^6 + (2 b_{4} + 4 c_{12}) x^4 + 4 b_{11} x^3 + 4 a_{9} x + 4 c_{8} + 2$ |
$16$ |
$167$ |
$144$ |
$72$ |
$72$ |
$100\%$ |
$2$ |
|
2.2.8.32d |
$2$ |
$16$ |
$2$ |
$8$ |
$32$ |
$[2, \frac{7}{3}, \frac{7}{3}]$ |
$[1, \frac{4}{3}, \frac{4}{3}]$ |
$\langle\frac{1}{2}, \frac{11}{12}, \frac{9}{8}\rangle$ |
$(1, \frac{5}{3}, \frac{5}{3})$ |
$x^8 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 a_{9} x + 4 c_{8} + 2$ |
$4$ |
$19$ |
$36$ |
$18$ |
$18$ |
$100\%$ |
$2$ |
|
2.2.8.34a |
$2$ |
$16$ |
$2$ |
$8$ |
$34$ |
$[\frac{4}{3}, \frac{4}{3}, \frac{13}{4}]$ |
$[\frac{1}{3}, \frac{1}{3}, \frac{9}{4}]$ |
$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{4}\rangle$ |
$(\frac{1}{3}, \frac{1}{3}, 8)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{13} x^5 + 4 b_{11} x^3 + (2 a_{2} + 8 c_{18}) x^2 + 8 b_{17} x + 2$ |
$4$ |
$784$ |
$768$ |
$384$ |
$384$ |
$100\%$ |
$2$ |
|
2.2.8.36a |
$2$ |
$16$ |
$2$ |
$8$ |
$36$ |
$[\frac{18}{7}, \frac{18}{7}, \frac{18}{7}]$ |
$[\frac{11}{7}, \frac{11}{7}, \frac{11}{7}]$ |
$\langle\frac{11}{14}, \frac{33}{28}, \frac{11}{8}\rangle$ |
$(\frac{11}{7}, \frac{11}{7}, \frac{11}{7})$ |
$x^8 + 4 b_{12} x^4 + 4 a_{11} x^3 + 4 b_{10} x^2 + 2$ |
$2$ |
$26$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
|
2.2.8.36b |
$2$ |
$16$ |
$2$ |
$8$ |
$36$ |
$[2, 2, 3]$ |
$[1, 1, 2]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ |
$(1, 1, 5)$ |
$x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 b_{13} x^5 + 2 b_{4} x^4 + 4 a_{11} x^3 + 4 c_{8} + 8 c_{16} + 2$ |
$16$ |
$694$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
2.2.8.36c |
$2$ |
$16$ |
$2$ |
$8$ |
$36$ |
$[2, \frac{8}{3}, \frac{8}{3}]$ |
$[1, \frac{5}{3}, \frac{5}{3}]$ |
$\langle\frac{1}{2}, \frac{13}{12}, \frac{11}{8}\rangle$ |
$(1, \frac{7}{3}, \frac{7}{3})$ |
$x^8 + 4 b_{13} x^5 + 2 a_{4} x^4 + 4 a_{11} x^3 + 4 b_{10} x^2 + 4 c_{8} + 2$ |
$4$ |
$93$ |
$144$ |
$72$ |
$72$ |
$100\%$ |
$2$ |
|
2.2.8.40a |
$2$ |
$16$ |
$2$ |
$8$ |
$40$ |
$[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]$ |
$[\frac{13}{7}, \frac{13}{7}, \frac{13}{7}]$ |
$\langle\frac{13}{14}, \frac{39}{28}, \frac{13}{8}\rangle$ |
$(\frac{13}{7}, \frac{13}{7}, \frac{13}{7})$ |
$x^8 + 4 b_{14} x^6 + 4 a_{13} x^5 + 4 b_{12} x^4 + 2$ |
$2$ |
$26$ |
$48$ |
$24$ |
$24$ |
$100\%$ |
$1$ |
|
2.2.8.40b |
$2$ |
$16$ |
$2$ |
$8$ |
$40$ |
$[2, 2, \frac{7}{2}]$ |
$[1, 1, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{13}{8}\rangle$ |
$(1, 1, 7)$ |
$x^8 + 4 b_{15} x^7 + 2 a_{6} x^6 + 4 a_{13} x^5 + (2 b_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{17} x + 4 c_{8} + 2$ |
$16$ |
$2468$ |
$2304$ |
$1152$ |
$1152$ |
$100\%$ |
$2$ |
|
2.2.8.40c |
$2$ |
$16$ |
$2$ |
$8$ |
$40$ |
$[\frac{8}{3}, \frac{8}{3}, 3]$ |
$[\frac{5}{3}, \frac{5}{3}, 2]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 3)$ |
$x^8 + 4 b_{15} x^7 + 4 a_{13} x^5 + 4 b_{12} x^4 + 4 a_{10} x^2 + 8 c_{16} + 2$ |
$4$ |
$148$ |
$144$ |
$72$ |
$72$ |
$100\%$ |
$2$ |
|
2.2.8.40d |
$2$ |
$16$ |
$2$ |
$8$ |
$40$ |
$[2, 3, 3]$ |
$[1, 2, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}\rangle$ |
$(1, 3, 3)$ |
$x^8 + 4 b_{15} x^7 + 4 b_{14} x^6 + 4 a_{13} x^5 + 2 a_{4} x^4 + 4 b_{10} x^2 + 4 c_{8} + 8 c_{16} + 2$ |
$16$ |
$536$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
2.2.8.42a |
$2$ |
$16$ |
$2$ |
$8$ |
$42$ |
$[2, 2, \frac{15}{4}]$ |
$[1, 1, \frac{11}{4}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}\rangle$ |
$(1, 1, 8)$ |
$x^8 + 4 b_{15} x^7 + (2 a_{6} + 8 c_{22}) x^6 + 8 b_{21} x^5 + 2 b_{4} x^4 + 8 b_{19} x^3 + 8 b_{17} x + 4 c_{8} + 2$ |
$16$ |
$3104$ |
$3072$ |
$1536$ |
$1536$ |
$100\%$ |
$2$ |
|
2.2.8.44a |
$2$ |
$16$ |
$2$ |
$8$ |
$44$ |
$[\frac{8}{3}, \frac{8}{3}, \frac{7}{2}]$ |
$[\frac{5}{3}, \frac{5}{3}, \frac{5}{2}]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{15}{8}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 5)$ |
$x^8 + 4 a_{15} x^7 + (4 b_{12} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 2$ |
$4$ |
$584$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
2.2.8.44b |
$2$ |
$16$ |
$2$ |
$8$ |
$44$ |
$[2, \frac{10}{3}, \frac{10}{3}]$ |
$[1, \frac{7}{3}, \frac{7}{3}]$ |
$\langle\frac{1}{2}, \frac{17}{12}, \frac{15}{8}\rangle$ |
$(1, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 2 a_{4} x^4 + 8 b_{18} x^2 + 8 b_{17} x + 4 c_{8} + 2$ |
$4$ |
$292$ |
$576$ |
$288$ |
$288$ |
$100\%$ |
$2$ |
|
2.2.8.44c |
$2$ |
$16$ |
$2$ |
$8$ |
$44$ |
$[3, \frac{19}{6}, \frac{19}{6}]$ |
$[2, \frac{13}{6}, \frac{13}{6}]$ |
$\langle1, \frac{19}{12}, \frac{15}{8}\rangle$ |
$(2, \frac{7}{3}, \frac{7}{3})$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + 4 b_{12} x^4 + 8 b_{17} x + 8 c_{16} + 2$ |
$4$ |
$100$ |
$192$ |
$96$ |
$96$ |
$100\%$ |
$2$ |
|
2.2.8.44d |
$2$ |
$16$ |
$2$ |
$8$ |
$44$ |
$[2, 3, \frac{7}{2}]$ |
$[1, 2, \frac{5}{2}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ |
$(1, 3, 5)$ |
$x^8 + 4 a_{15} x^7 + 4 b_{14} x^6 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 b_{17} x + 4 c_{8} + 8 c_{16} + 2$ |
$16$ |
$2176$ |
$1728$ |
$864$ |
$864$ |
$100\%$ |
$3$ |
|
2.2.8.48a |
$2$ |
$16$ |
$2$ |
$8$ |
$48$ |
$[\frac{8}{3}, \frac{8}{3}, 4]$ |
$[\frac{5}{3}, \frac{5}{3}, 3]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{17}{8}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 7)$ |
$x^8 + 8 b_{23} x^7 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 a_{17} x + 16 c_{24} + 2$ |
$4$ |
$2320$ |
$2304$ |
$1152$ |
$1152$ |
$100\%$ |
$2$ |
|
2.2.8.48b |
$2$ |
$16$ |
$2$ |
$8$ |
$48$ |
$[3, \frac{7}{2}, \frac{7}{2}]$ |
$[2, \frac{5}{2}, \frac{5}{2}]$ |
$\langle1, \frac{7}{4}, \frac{17}{8}\rangle$ |
$(2, 3, 3)$ |
$x^8 + 4 b_{14} x^6 + (4 b_{12} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{18} x^2 + 8 a_{17} x + 8 c_{16} + 2$ |
$16$ |
$684$ |
$768$ |
$384$ |
$384$ |
$100\%$ |
$2$ |
|
2.2.8.48c |
$2$ |
$16$ |
$2$ |
$8$ |
$48$ |
$[2, 3, 4]$ |
$[1, 2, 3]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}\rangle$ |
$(1, 3, 7)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + 2 a_{4} x^4 + 8 b_{19} x^3 + 4 a_{10} x^2 + 8 a_{17} x + 4 c_{8} + 8 c_{16} + 16 c_{24} + 2$ |
$16$ |
$7472$ |
$6912$ |
$3456$ |
$3456$ |
$100\%$ |
$3$ |
|
2.2.8.48d |
$2$ |
$16$ |
$2$ |
$8$ |
$48$ |
$[2, \frac{7}{2}, \frac{15}{4}]$ |
$[1, \frac{5}{2}, \frac{11}{4}]$ |
$\langle\frac{1}{2}, \frac{3}{2}, \frac{17}{8}\rangle$ |
$(1, 4, 5)$ |
$x^8 + (4 b_{14} + 8 c_{22}) x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20}) x^4 + 8 b_{19} x^3 + 8 b_{18} x^2 + 8 a_{17} x + 4 c_{8} + 2$ |
$16$ |
$2320$ |
$2304$ |
$1152$ |
$1152$ |
$100\%$ |
$3$ |
|
2.2.8.50a |
$2$ |
$16$ |
$2$ |
$8$ |
$50$ |
$[\frac{8}{3}, \frac{8}{3}, \frac{17}{4}]$ |
$[\frac{5}{3}, \frac{5}{3}, \frac{13}{4}]$ |
$\langle\frac{5}{6}, \frac{5}{4}, \frac{9}{4}\rangle$ |
$(\frac{5}{3}, \frac{5}{3}, 8)$ |
$x^8 + 8 b_{23} x^7 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 b_{19} x^3 + (4 a_{10} + 16 c_{26}) x^2 + 16 b_{25} x + 2$ |
$4$ |
$3104$ |
$3072$ |
$1536$ |
$1536$ |
$100\%$ |
$2$ |
|
2.2.8.50b |
$2$ |
$16$ |
$2$ |
$8$ |
$50$ |
$[2, 3, \frac{17}{4}]$ |
$[1, 2, \frac{13}{4}]$ |
$\langle\frac{1}{2}, \frac{5}{4}, \frac{9}{4}\rangle$ |
$(1, 3, 8)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + 2 a_{4} x^4 + 8 b_{19} x^3 + (4 a_{10} + 16 c_{26}) x^2 + 16 b_{25} x + 4 c_{8} + 8 c_{16} + 2$ |
$16$ |
$9248$ |
$9216$ |
$4608$ |
$4608$ |
$100\%$ |
$3$ |
|
2.2.8.52a |
$2$ |
$16$ |
$2$ |
$8$ |
$52$ |
$[3, \frac{23}{6}, \frac{23}{6}]$ |
$[2, \frac{17}{6}, \frac{17}{6}]$ |
$\langle1, \frac{23}{12}, \frac{19}{8}\rangle$ |
$(2, \frac{11}{3}, \frac{11}{3})$ |
$x^8 + 8 b_{22} x^6 + 8 b_{21} x^5 + 4 b_{12} x^4 + 8 a_{19} x^3 + 8 b_{18} x^2 + 8 c_{16} + 2$ |
$4$ |
$392$ |
$768$ |
$384$ |
$384$ |
$100\%$ |
$2$ |
|
2.2.8.52b |
$2$ |
$16$ |
$2$ |
$8$ |
$52$ |
$[2, \frac{7}{2}, \frac{17}{4}]$ |
$[1, \frac{5}{2}, \frac{13}{4}]$ |
$\langle\frac{1}{2}, \frac{3}{2}, \frac{19}{8}\rangle$ |
$(1, 4, 7)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20}) x^4 + 8 a_{19} x^3 + (8 b_{18} + 16 c_{26}) x^2 + 16 b_{25} x + 4 c_{8} + 2$ |
$16$ |
$9248$ |
$9216$ |
$4608$ |
$4608$ |
$100\%$ |
$3$ |
|
2.2.8.52c |
$2$ |
$16$ |
$2$ |
$8$ |
$52$ |
$[3, \frac{7}{2}, 4]$ |
$[2, \frac{5}{2}, 3]$ |
$\langle1, \frac{7}{4}, \frac{19}{8}\rangle$ |
$(2, 3, 5)$ |
$x^8 + 8 b_{23} x^7 + 4 a_{14} x^6 + 8 b_{21} x^5 + (4 b_{12} + 8 c_{20}) x^4 + 8 a_{19} x^3 + 8 b_{18} x^2 + 8 c_{16} + 16 c_{24} + 2$ |
$16$ |
$2712$ |
$2304$ |
$1152$ |
$1152$ |
$100\%$ |
$3$ |
|
2.2.8.54a |
$2$ |
$16$ |
$2$ |
$8$ |
$54$ |
$[2, \frac{7}{2}, \frac{9}{2}]$ |
$[1, \frac{5}{2}, \frac{7}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\rangle$ |
$(1, 4, 8)$ |
$x^8 + 8 b_{23} x^7 + 4 b_{14} x^6 + 8 b_{21} x^5 + (2 a_{4} + 8 c_{20} + 16 c_{28}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 4 c_{8} + 2$ |
$16$ |
$12744$ |
$12288$ |
$6144$ |
$6144$ |
$100\%$ |
$3$ |
|
2.2.8.56a |
$2$ |
$16$ |
$2$ |
$8$ |
$56$ |
$[3, \frac{7}{2}, \frac{9}{2}]$ |
$[2, \frac{5}{2}, \frac{7}{2}]$ |
$\langle1, \frac{7}{4}, \frac{21}{8}\rangle$ |
$(2, 3, 7)$ |
$x^8 + 8 b_{23} x^7 + 4 a_{14} x^6 + 8 a_{21} x^5 + (4 b_{12} + 8 c_{20} + 16 c_{28}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 2$ |
$16$ |
$9504$ |
$9216$ |
$4608$ |
$4608$ |
$100\%$ |
$3$ |
|
2.2.8.56b |
$2$ |
$16$ |
$2$ |
$8$ |
$56$ |
$[3, 4, \frac{17}{4}]$ |
$[2, 3, \frac{13}{4}]$ |
$\langle1, 2, \frac{21}{8}\rangle$ |
$(2, 4, 5)$ |
$x^8 + 8 b_{23} x^7 + 8 b_{22} x^6 + 8 a_{21} x^5 + 4 b_{12} x^4 + (8 b_{18} + 16 c_{26}) x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$16$ |
$3104$ |
$3072$ |
$1536$ |
$1536$ |
$100\%$ |
$3$ |
|
2.2.8.58a |
$2$ |
$16$ |
$2$ |
$8$ |
$58$ |
$[3, \frac{7}{2}, \frac{19}{4}]$ |
$[2, \frac{5}{2}, \frac{15}{4}]$ |
$\langle1, \frac{7}{4}, \frac{11}{4}\rangle$ |
$(2, 3, 8)$ |
$x^8 + 8 b_{23} x^7 + (4 a_{14} + 16 c_{30}) x^6 + 16 b_{29} x^5 + (4 b_{12} + 8 c_{20}) x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 2$ |
$16$ |
$12352$ |
$12288$ |
$6144$ |
$6144$ |
$100\%$ |
$3$ |
|
2.2.8.60a |
$2$ |
$16$ |
$2$ |
$8$ |
$60$ |
$[3, 4, \frac{19}{4}]$ |
$[2, 3, \frac{15}{4}]$ |
$\langle1, 2, \frac{23}{8}\rangle$ |
$(2, 4, 7)$ |
$x^8 + 8 a_{23} x^7 + (8 b_{22} + 16 c_{30}) x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 2$ |
$16$ |
$12352$ |
$12288$ |
$6144$ |
$6144$ |
$100\%$ |
$3$ |
|
2.2.8.62a |
$2$ |
$16$ |
$2$ |
$8$ |
$62$ |
$[3, 4, 5]$ |
$[2, 3, 4]$ |
$\langle1, 2, 3\rangle$ |
$(2, 4, 8)$ |
$x^8 + 16 b_{31} x^7 + 8 b_{22} x^6 + 16 b_{29} x^5 + 4 b_{12} x^4 + 16 b_{27} x^3 + 8 b_{18} x^2 + 16 b_{25} x + 8 c_{16} + 16 c_{24} + 32 c_{32} + 2$ |
$16$ |
$17076$ |
$16384$ |
$8192$ |
$8192$ |
$100\%$ |
$3$ |
|
2.1.16.16a |
$2$ |
$16$ |
$1$ |
$16$ |
$16$ |
$[\frac{16}{15}, \frac{16}{15}, \frac{16}{15}, \frac{16}{15}]$ |
$[\frac{1}{15}, \frac{1}{15}, \frac{1}{15}, \frac{1}{15}]$ |
$\langle\frac{1}{30}, \frac{1}{20}, \frac{7}{120}, \frac{1}{16}\rangle$ |
$(\frac{1}{15}, \frac{1}{15}, \frac{1}{15}, \frac{1}{15})$ |
$x^{16} + 2 a_{1} x + 2$ |
$1$ |
$1$ |
$1$ |
$1$ |
$1$ |
$100\%$ |
$1$ |
$1$ |