| Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
| 3.1.45.133a |
$3$ |
$45$ |
$1$ |
$45$ |
$1$ |
$1$ |
$1$ |
$45$ |
$1$ |
$45$ |
$133$ |
$0$ |
$133$ |
$\Q_{3}$ |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[\frac{3}{2}, \frac{37}{15}]$ |
$\langle1, \frac{89}{45}\rangle$ |
$(\frac{15}{2}, 22)$ |
$x^{45} + 9 a_{89} x^{44} + (9 b_{66} + 27 c_{111}) x^{21} + 27 b_{110} x^{20} + 27 b_{109} x^{19} + 27 b_{107} x^{17} + 27 b_{106} x^{16} + 9 b_{60} x^{15} + 27 b_{104} x^{14} + 27 b_{103} x^{13} + 9 b_{57} x^{12} + 27 b_{101} x^{11} + 27 b_{100} x^{10} + 27 b_{98} x^8 + 27 b_{97} x^7 + 9 b_{51} x^6 + 27 b_{95} x^5 + 27 b_{94} x^4 + 9 b_{48} x^3 + 27 b_{92} x^2 + 27 b_{91} x + 3$ |
$3$ |
$0$ |
$2324522934$ |
$2324522934$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.3.5a1.1-1.15.58a |
$3$ |
$15$ |
$3$ |
$45$ |
$1$ |
$1$ |
$1$ |
$15$ |
$3$ |
$45$ |
$58$ |
$5$ |
$61$ |
3.1.3.5a1.1 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[\frac{22}{5}]$ |
$\langle\frac{44}{15}\rangle$ |
$(22)$ |
$x^{15} + (b_{59} \pi^4 + a_{44} \pi^3) x^{14} + b_{58} \pi^4 x^{13} + b_{56} \pi^4 x^{11} + b_{55} \pi^4 x^{10} + b_{53} \pi^4 x^8 + b_{52} \pi^4 x^7 + c_{66} \pi^5 x^6 + (b_{65} \pi^5 + b_{50} \pi^4) x^5 + (b_{64} \pi^5 + b_{49} \pi^4) x^4 + (b_{62} \pi^5 + b_{47} \pi^4) x^2 + (b_{61} \pi^5 + b_{46} \pi^4) x + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.3.5a1.2-1.15.58a |
$3$ |
$15$ |
$3$ |
$45$ |
$1$ |
$1$ |
$1$ |
$15$ |
$3$ |
$45$ |
$58$ |
$5$ |
$61$ |
3.1.3.5a1.2 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[\frac{22}{5}]$ |
$\langle\frac{44}{15}\rangle$ |
$(22)$ |
$x^{15} + (b_{59} \pi^4 + a_{44} \pi^3) x^{14} + b_{58} \pi^4 x^{13} + b_{56} \pi^4 x^{11} + b_{55} \pi^4 x^{10} + b_{53} \pi^4 x^8 + b_{52} \pi^4 x^7 + c_{66} \pi^5 x^6 + (b_{65} \pi^5 + b_{50} \pi^4) x^5 + (b_{64} \pi^5 + b_{49} \pi^4) x^4 + (b_{62} \pi^5 + b_{47} \pi^4) x^2 + (b_{61} \pi^5 + b_{46} \pi^4) x + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.3.5a1.3-1.15.58a |
$3$ |
$15$ |
$3$ |
$45$ |
$1$ |
$1$ |
$1$ |
$15$ |
$3$ |
$45$ |
$58$ |
$5$ |
$61$ |
3.1.3.5a1.3 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[\frac{22}{5}]$ |
$\langle\frac{44}{15}\rangle$ |
$(22)$ |
$x^{15} + (b_{59} \pi^4 + a_{44} \pi^3) x^{14} + b_{58} \pi^4 x^{13} + b_{56} \pi^4 x^{11} + b_{55} \pi^4 x^{10} + b_{53} \pi^4 x^8 + b_{52} \pi^4 x^7 + c_{66} \pi^5 x^6 + (b_{65} \pi^5 + b_{50} \pi^4) x^5 + (b_{64} \pi^5 + b_{49} \pi^4) x^4 + (b_{62} \pi^5 + b_{47} \pi^4) x^2 + (b_{61} \pi^5 + b_{46} \pi^4) x + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.5.4a1.1-1.9.97a |
$3$ |
$9$ |
$5$ |
$45$ |
$1$ |
$1$ |
$1$ |
$9$ |
$5$ |
$45$ |
$97$ |
$4$ |
$97$ |
3.1.5.4a1.1 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[\frac{15}{2}, \frac{37}{3}]$ |
$\langle5, \frac{89}{9}\rangle$ |
$(\frac{15}{2}, 22)$ |
$x^9 + (b_{107} \pi^{12} + b_{98} \pi^{11} + a_{89} \pi^{10}) x^8 + (b_{106} \pi^{12} + b_{97} \pi^{11}) x^7 + (b_{60} \pi^7 + b_{51} \pi^6) x^6 + (b_{104} \pi^{12} + b_{95} \pi^{11}) x^5 + (b_{103} \pi^{12} + b_{94} \pi^{11}) x^4 + (c_{111} \pi^{13} + b_{66} \pi^8 + b_{57} \pi^7 + b_{48} \pi^6) x^3 + (b_{110} \pi^{13} + b_{101} \pi^{12} + b_{92} \pi^{11}) x^2 + (b_{109} \pi^{13} + b_{100} \pi^{12} + b_{91} \pi^{11}) x + \pi$ |
$3$ |
$0$ |
$2324522934$ |
$2324522934$ |
$0$ |
$0\%$ |
$2$ |
| 3.1.15.29a1.1-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.1 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.2-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.2 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.3-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.3 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.4-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.4 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.5-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.5 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.6-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.6 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.7-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.7 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.8-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.8 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.9-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.9 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.10-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.10 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.11-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.11 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.12-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.12 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.13-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.13 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.14-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.14 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.15-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.15 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.16-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.16 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.17-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.17 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.18-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.18 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.19-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.19 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.20-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.20 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.21-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.21 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.22-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.22 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.23-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.23 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.24-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.24 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.25-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.25 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.26-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.26 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.27-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.27 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.28-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.28 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.29-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.29 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.30-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.30 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.31-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.31 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.32-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.32 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.33-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.33 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.34-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.34 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.35-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.35 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.36-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.36 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.37-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.37 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.38-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.38 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.39-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.39 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.40-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.40 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.41-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.41 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.42-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.42 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.43-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.43 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.44-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.44 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |
| 3.1.15.29a1.45-1.3.46a |
$3$ |
$3$ |
$15$ |
$45$ |
$1$ |
$1$ |
$1$ |
$3$ |
$15$ |
$45$ |
$46$ |
$29$ |
$61$ |
3.1.15.29a1.45 |
$[\frac{5}{2}, \frac{52}{15}]$ |
$[22]$ |
$\langle\frac{44}{3}\rangle$ |
$(22)$ |
$x^3 + (b_{65} \pi^{22} + b_{62} \pi^{21} + b_{59} \pi^{20} + b_{56} \pi^{19} + b_{53} \pi^{18} + b_{50} \pi^{17} + b_{47} \pi^{16} + a_{44} \pi^{15}) x^2 + (b_{64} \pi^{22} + b_{61} \pi^{21} + b_{58} \pi^{20} + b_{55} \pi^{19} + b_{52} \pi^{18} + b_{49} \pi^{17} + b_{46} \pi^{16}) x + c_{66} \pi^{23} + \pi$ |
$3$ |
$0$ |
$9565938$ |
$9565938$ |
$0$ |
$0\%$ |
$1$ |