Label |
$n$ |
Polynomial |
$p$ |
$e$ |
$f$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible slopes |
Slope content |
Ind. of Insep. |
Assoc. Inertia |
3.20.15.1 |
$20$ |
x20 + 23x16 + 4x15 - 606x12 - 756x11 + 6x10 + 1862x8 + 7788x7 + 1044x6 + 4x5 + 11581x4 - 5788x3 + 894x2 - 52x + 4 |
$3$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
3.20.15.2 |
$20$ |
x20 + 162x4 - 243 |
$3$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
7.20.15.1 |
$20$ |
x20 + 39x16 + 16x15 - 344x12 - 7232x11 + 96x10 + 4344x8 + 131648x7 + 38272x6 + 256x5 + 59536x4 - 212224x3 + 84096x2 - 8704x + 9328 |
$7$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
7.20.15.2 |
$20$ |
x20 + 2401x4 - 67228 |
$7$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
11.20.15.1 |
$20$ |
x20 + 40x17 + 55x16 + 36x15 + 600x14 - 4400x13 + 2290x12 - 21740x11 + 46686x10 - 86000x9 + 43110x8 + 772900x7 + 1137540x6 - 870924x5 - 3796395x4 - 658460x3 + 3912270x2 + 1160940x + 1076652 |
$11$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
11.20.15.2 |
$20$ |
x20 - 13310x8 - 1449459 |
$11$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
11.20.19.1 |
$20$ |
x20 + 33 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.10 |
$20$ |
x20 + 66 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.2 |
$20$ |
x20 + 55 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.3 |
$20$ |
x20 + 11 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.4 |
$20$ |
x20 + 99 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.5 |
$20$ |
x20 + 44 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.6 |
$20$ |
x20 + 110 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.7 |
$20$ |
x20 + 22 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.8 |
$20$ |
x20 + 77 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
11.20.19.9 |
$20$ |
x20 + 88 |
$11$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
19.20.15.1 |
$20$ |
x20 + 115x16 + 68x15 - 7640x12 - 82960x11 + 1734x10 + 130840x8 + 4391440x7 + 1884280x6 + 19652x5 + 5940880x4 - 19545920x3 + 10970440x2 - 1768680x + 813425 |
$19$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
19.20.15.2 |
$20$ |
x20 + 651605x4 - 42093683 |
$19$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
23.20.15.1 |
$20$ |
x20 + 127x16 + 72x15 - 2936x12 - 106992x11 + 1944x10 + 148688x8 + 6352704x7 + 2545344x6 + 23328x5 + 6398336x4 - 33590016x3 + 18423936x2 - 2612736x + 3784976 |
$23$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
23.20.15.2 |
$20$ |
x20 + 839523x4 - 115854174 |
$23$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
31.20.15.1 |
$20$ |
x20 + 183x16 + 112x15 - 16136x12 - 223328x11 + 4704x10 + 496752x8 + 18886784x7 + 8329216x6 + 87808x5 + 35766016x4 - 136428544x3 + 79704576x2 - 12995584x + 10899712 |
$31$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
31.20.15.2 |
$20$ |
x20 + 6464647x4 - 801616228 |
$31$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
31.20.19.1 |
$20$ |
x20 + 124 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.10 |
$20$ |
x20 + 372 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.2 |
$20$ |
x20 + 62 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.3 |
$20$ |
x20 + 31 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.4 |
$20$ |
x20 + 496 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.5 |
$20$ |
x20 + 248 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.6 |
$20$ |
x20 + 186 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.7 |
$20$ |
x20 + 93 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.8 |
$20$ |
x20 + 527 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
31.20.19.9 |
$20$ |
x20 + 341 |
$31$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
43.20.15.1 |
$20$ |
x20 + 247x16 + 160x15 - 22406x12 - 443360x11 + 9600x10 + 1154878x8 + 50839520x7 + 23545600x6 + 256000x5 + 108808501x4 - 506526880x3 + 315030400x2 - 52992000x + 67086875 |
$43$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
43.20.15.2 |
$20$ |
x20 + 27350408x4 - 5880337720 |
$43$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
47.20.15.1 |
$20$ |
x20 + 239x16 + 168x15 + 16456x12 - 512736x11 + 10584x10 + 1044344x8 + 58233504x7 + 28209888x6 + 296352x5 + 37144336x4 - 619796352x3 + 426986784x2 - 69346368x + 213552128 |
$47$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
47.20.15.2 |
$20$ |
x20 + 4879681x4 - 9632490294 |
$47$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
59.20.15.1 |
$20$ |
x20 + 327x16 + 228x15 - 21446x12 - 868908x11 + 19494x10 + 2546718x8 + 132747756x7 + 65486844x6 + 740772x5 + 286716661x4 - 1801845924x3 + 1214651646x2 - 212601564x + 409702860 |
$59$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
59.20.15.2 |
$20$ |
x20 + 96938888x4 - 40750685043 |
$59$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
67.20.15.1 |
$20$ |
x20 + 343x16 + 260x15 + 28834x12 - 1130740x11 + 25350x10 + 3042502x8 + 184045420x7 + 96346900x6 + 1098500x5 + 175273021x4 - 2795646620x3 + 2075041150x2 - 365800500x + 1213842500 |
$67$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
67.20.15.2 |
$20$ |
x20 + 40302242x4 - 87758131955 |
$67$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
71.20.15.1 |
$20$ |
x20 + 427x16 + 256x15 - 101006x12 - 1167616x11 + 24576x10 + 6592958x8 + 229720832x7 + 99762176x6 + 1048576x5 + 1112578061x4 - 3815557888x3 + 2174541824x2 - 353370112x + 577001367 |
$71$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
71.20.15.2 |
$20$ |
x20 + 457410258x4 - 115470678464 |
$71$ |
$4$ |
$5$ |
$15$ |
$C_5\times D_4$ (as 20T12) |
$10$ |
$4$ |
$[\ ]$ |
$[\ ]_{4}^{10}$ |
$[0]$ |
$[2]$ |
71.20.19.1 |
$20$ |
x20 + 142 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.10 |
$20$ |
x20 + 1988 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.2 |
$20$ |
x20 + 355 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.3 |
$20$ |
x20 + 71 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.4 |
$20$ |
x20 + 284 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.5 |
$20$ |
x20 + 710 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.6 |
$20$ |
x20 + 1633 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |
71.20.19.7 |
$20$ |
x20 + 994 |
$71$ |
$20$ |
$1$ |
$19$ |
$C_5\times D_4$ (as 20T12) |
$2$ |
$20$ |
$[\ ]$ |
$[\ ]_{20}^{2}$ |
$[0]$ |
$[2]$ |