| Label |
$n$ |
Polynomial |
$p$ |
$f$ |
$e$ |
$c$ |
Galois group |
$u$ |
$t$ |
Visible Artin slopes |
Visible Swan slopes |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
$\#\Aut(K/\Q_p)$ |
Unram. Ext. |
Eisen. Poly. |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.12.18b1.4 |
$12$ |
$x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 2$ |
$2$ |
$1$ |
$12$ |
$18$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{4}{3}, 2]$ |
$[\frac{1}{3},1]$ |
$[\frac{4}{3}, \frac{4}{3}, 2]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1]_{3}^{2}$ |
$[\frac{4}{3}]^{2}$ |
$[\frac{1}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 2$ |
$[7, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 14]$ |
| 2.1.12.18b1.5 |
$12$ |
$x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 6$ |
$2$ |
$1$ |
$12$ |
$18$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{4}{3}, 2]$ |
$[\frac{1}{3},1]$ |
$[\frac{4}{3}, \frac{4}{3}, 2]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1]_{3}^{2}$ |
$[\frac{4}{3}]^{2}$ |
$[\frac{1}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 6$ |
$[7, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 24]$ |
| 2.1.12.24b1.1 |
$12$ |
$x^{12} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2]_{3}^{2}$ |
$[\frac{4}{3}]^{2}$ |
$[\frac{1}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
| 2.1.12.24b1.2 |
$12$ |
$x^{12} + 2 x^{2} + 4 x + 10$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2]_{3}^{2}$ |
$[\frac{4}{3}]^{2}$ |
$[\frac{1}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{2} + 4 x + 10$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
| 2.1.12.24b1.10 |
$12$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{2} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2]_{3}^{2}$ |
$[\frac{4}{3}]^{2}$ |
$[\frac{1}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{2} + 4 x + 2$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
| 2.1.12.24b1.11 |
$12$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{2} + 4 x + 10$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{4}{3}, 3]$ |
$[\frac{1}{3},2]$ |
$[\frac{4}{3}, \frac{4}{3}, 3]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2]_{3}^{2}$ |
$[\frac{4}{3}]^{2}$ |
$[\frac{1}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{9} + 4 x^{7} + 2 x^{2} + 4 x + 10$ |
$[13, 2, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 7, 19]$ |
| 2.1.12.24c1.4 |
$12$ |
$x^{12} + 4 x^{8} + 2 x^{6} + 4 x^{5} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[2, \frac{8}{3}]$ |
$[1,\frac{5}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{8} + 2 x^{6} + 4 x^{5} + 4 x + 2$ |
$[13, 6, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 13, 25]$ |
| 2.1.12.24c1.6 |
$12$ |
$x^{12} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x + 2$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[2, \frac{8}{3}]$ |
$[1,\frac{5}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x + 2$ |
$[13, 6, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 13, 25]$ |
| 2.1.12.24c1.14 |
$12$ |
$x^{12} + 4 x^{8} + 2 x^{6} + 4 x^{5} + 4 x + 6$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[2, \frac{8}{3}]$ |
$[1,\frac{5}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{8} + 2 x^{6} + 4 x^{5} + 4 x + 6$ |
$[13, 6, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 6, 24]$ |
| 2.1.12.24c1.16 |
$12$ |
$x^{12} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x + 6$ |
$2$ |
$1$ |
$12$ |
$24$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[2, \frac{8}{3}]$ |
$[1,\frac{5}{3}]$ |
$[2, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 4 x^{5} + 4 x + 6$ |
$[13, 6, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 6, 24]$ |
| 2.1.12.28c1.1 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{5} + 2$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.2 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{5} + 10$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.7 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} + 2$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.8 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} + 10$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.27 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{6} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{6} + 4 x^{5} + 2$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.28 |
$12$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{6} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{6} + 4 x^{5} + 10$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.29 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{6} + 4 x^{5} + 2$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{6} + 4 x^{5} + 2$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
| 2.1.12.28c1.30 |
$12$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{6} + 4 x^{5} + 10$ |
$2$ |
$1$ |
$12$ |
$28$ |
$C_2 \times S_4$ (as 12T24) |
$2$ |
$3$ |
$[\frac{8}{3}, 3]$ |
$[\frac{5}{3},2]$ |
$[\frac{8}{3}, \frac{8}{3}, 3]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2]_{3}^{2}$ |
$[\frac{8}{3}]^{2}$ |
$[\frac{5}{3}]^{2}$ |
$4$ |
$t + 1$ |
$x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{6} + 4 x^{5} + 10$ |
$[17, 10, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |