Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
3.1.6.10a1.1-2.1.0a |
$3$ |
$2$ |
$6$ |
$12$ |
$2$ |
$1$ |
$2$ |
$1$ |
$6$ |
$6$ |
$0$ |
$10$ |
$10$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/2$ |
$1/2$ |
$100\%$ |
$0$ |
3.1.6.10a1.1-1.2.1a |
$3$ |
$2$ |
$6$ |
$12$ |
$1$ |
$1$ |
$1$ |
$2$ |
$6$ |
$12$ |
$1$ |
$10$ |
$6$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + d_{0} \pi$ |
$2$ |
$2$ |
$1$ |
$1$ |
$2/3$ |
$66.67\%$ |
$0$ |
3.1.6.10a1.1-3.1.0a |
$3$ |
$3$ |
$6$ |
$18$ |
$3$ |
$1$ |
$3$ |
$1$ |
$6$ |
$6$ |
$0$ |
$10$ |
$15$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$3$ |
$1$ |
$1$ |
$1/3$ |
$1/3$ |
$100\%$ |
$0$ |
3.1.6.10a1.1-1.3.3a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$3$ |
$10$ |
$8$ |
3.1.6.10a1.1 |
$[\frac{5}{4}, \frac{9}{4}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{1}{2})$ |
$x^3 + a_{1} \pi x + \pi$ |
$1$ |
$2$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.4a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$4$ |
$10$ |
$9$ |
3.1.6.10a1.1 |
$[\frac{3}{2}, \frac{9}{4}]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(1)$ |
$x^3 + a_{2} \pi x^2 + c_{3} \pi^2 + \pi$ |
$3$ |
$4$ |
$2$ |
$2$ |
$2$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.6a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$6$ |
$10$ |
$11$ |
3.1.6.10a1.1 |
$[2, \frac{9}{4}]$ |
$[2]$ |
$\langle\frac{4}{3}\rangle$ |
$(2)$ |
$x^3 + b_{5} \pi^2 x^2 + a_{4} \pi^2 x + c_{6} \pi^3 + \pi$ |
$3$ |
$12$ |
$6$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.7a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$7$ |
$10$ |
$12$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{9}{4}]$ |
$[\frac{5}{2}]$ |
$\langle\frac{5}{3}\rangle$ |
$(\frac{5}{2})$ |
$x^3 + a_{5} \pi^2 x^2 + b_{7} \pi^3 x + \pi$ |
$1$ |
$6$ |
$6$ |
$6$ |
$11/2$ |
$91.67\%$ |
$1$ |
3.1.6.10a1.1-1.3.9a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$9$ |
$10$ |
$14$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{29}{12}]$ |
$[\frac{7}{2}]$ |
$\langle\frac{7}{3}\rangle$ |
$(\frac{7}{2})$ |
$x^3 + b_{8} \pi^3 x^2 + (b_{10} \pi^4 + a_{7} \pi^3) x + \pi$ |
$1$ |
$18$ |
$18$ |
$18$ |
$18$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.10a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$10$ |
$10$ |
$15$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{5}{2}]$ |
$[4]$ |
$\langle\frac{8}{3}\rangle$ |
$(4)$ |
$x^3 + (b_{11} \pi^4 + a_{8} \pi^3) x^2 + b_{10} \pi^4 x + c_{12} \pi^5 + \pi$ |
$3$ |
$36$ |
$18$ |
$18$ |
$18$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.12a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$12$ |
$10$ |
$17$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{8}{3}]$ |
$[5]$ |
$\langle\frac{10}{3}\rangle$ |
$(5)$ |
$x^3 + (b_{14} \pi^5 + b_{11} \pi^4) x^2 + (b_{13} \pi^5 + a_{10} \pi^4) x + c_{15} \pi^6 + \pi$ |
$3$ |
$108$ |
$54$ |
$54$ |
$54$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.13a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$13$ |
$10$ |
$18$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{11}{4}]$ |
$[\frac{11}{2}]$ |
$\langle\frac{11}{3}\rangle$ |
$(\frac{11}{2})$ |
$x^3 + (b_{14} \pi^5 + a_{11} \pi^4) x^2 + (b_{16} \pi^6 + b_{13} \pi^5) x + \pi$ |
$1$ |
$54$ |
$54$ |
$54$ |
$54$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.15a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$15$ |
$10$ |
$20$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{35}{12}]$ |
$[\frac{13}{2}]$ |
$\langle\frac{13}{3}\rangle$ |
$(\frac{13}{2})$ |
$x^3 + (b_{17} \pi^6 + b_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6 + a_{13} \pi^5) x + \pi$ |
$1$ |
$162$ |
$162$ |
$162$ |
$162$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.16a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$16$ |
$10$ |
$21$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, 3]$ |
$[7]$ |
$\langle\frac{14}{3}\rangle$ |
$(7)$ |
$x^3 + (b_{20} \pi^7 + b_{17} \pi^6 + a_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6) x + c_{21} \pi^8 + \pi$ |
$3$ |
$324$ |
$162$ |
$162$ |
$162$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.18a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$18$ |
$10$ |
$23$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{19}{6}]$ |
$[8]$ |
$\langle\frac{16}{3}\rangle$ |
$(8)$ |
$x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + b_{17} \pi^6) x^2 + (b_{22} \pi^8 + b_{19} \pi^7 + a_{16} \pi^6) x + c_{24} \pi^9 + \pi$ |
$3$ |
$972$ |
$486$ |
$486$ |
$486$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.19a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$19$ |
$10$ |
$24$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{13}{4}]$ |
$[\frac{17}{2}]$ |
$\langle\frac{17}{3}\rangle$ |
$(\frac{17}{2})$ |
$x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + a_{17} \pi^6) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + \pi$ |
$1$ |
$486$ |
$486$ |
$486$ |
$486$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-1.3.20a |
$3$ |
$3$ |
$6$ |
$18$ |
$1$ |
$1$ |
$1$ |
$3$ |
$6$ |
$18$ |
$20$ |
$10$ |
$25$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{10}{3}]$ |
$[9]$ |
$\langle6\rangle$ |
$(9)$ |
$x^3 + (b_{26} \pi^9 + b_{23} \pi^8 + b_{20} \pi^7) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + c_{27} \pi^{10} + \pi$ |
$3$ |
$2187$ |
$729$ |
$729$ |
$729$ |
$100\%$ |
$1$ |
3.1.6.10a1.1-4.1.0a |
$3$ |
$4$ |
$6$ |
$24$ |
$4$ |
$1$ |
$4$ |
$1$ |
$6$ |
$6$ |
$0$ |
$10$ |
$20$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$4$ |
$0$ |
$1$ |
$1/4$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-2.2.2a |
$3$ |
$4$ |
$6$ |
$24$ |
$2$ |
$1$ |
$2$ |
$2$ |
$6$ |
$12$ |
$2$ |
$10$ |
$12$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + d_{0} \pi$ |
$4$ |
$0$ |
$1$ |
$1/2$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-1.4.3a |
$3$ |
$4$ |
$6$ |
$24$ |
$1$ |
$1$ |
$1$ |
$4$ |
$6$ |
$24$ |
$3$ |
$10$ |
$8$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^4 + d_{0} \pi$ |
$2$ |
$0$ |
$1$ |
$1$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-5.1.0a |
$3$ |
$5$ |
$6$ |
$30$ |
$5$ |
$1$ |
$5$ |
$1$ |
$6$ |
$6$ |
$0$ |
$10$ |
$25$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$5$ |
$0$ |
$1$ |
$1/5$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-1.5.4a |
$3$ |
$5$ |
$6$ |
$30$ |
$1$ |
$1$ |
$1$ |
$5$ |
$6$ |
$30$ |
$4$ |
$10$ |
$9$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^5 + \pi$ |
$1$ |
$0$ |
$1$ |
$1$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-6.1.0a |
$3$ |
$6$ |
$6$ |
$36$ |
$6$ |
$1$ |
$6$ |
$1$ |
$6$ |
$6$ |
$0$ |
$10$ |
$30$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$6$ |
$0$ |
$1$ |
$1/6$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-3.2.3a |
$3$ |
$6$ |
$6$ |
$36$ |
$3$ |
$1$ |
$3$ |
$2$ |
$6$ |
$12$ |
$3$ |
$10$ |
$18$ |
3.1.6.10a1.1 |
$[\frac{9}{4}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x^2 + d_{0} \pi$ |
$6$ |
$0$ |
$1$ |
$1/3$ |
$0$ |
$0\%$ |
$0$ |
3.1.6.10a1.1-2.3.6a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$6$ |
$10$ |
$16$ |
3.1.6.10a1.1 |
$[\frac{5}{4}, \frac{9}{4}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(\frac{1}{2})$ |
$x^3 + a_{1} \pi x + \pi$ |
$2$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.8a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$8$ |
$10$ |
$18$ |
3.1.6.10a1.1 |
$[\frac{3}{2}, \frac{9}{4}]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(1)$ |
$x^3 + a_{2} \pi x^2 + c_{3} \pi^2 + \pi$ |
$6$ |
$0$ |
$8$ |
$4$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.12a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$12$ |
$10$ |
$22$ |
3.1.6.10a1.1 |
$[2, \frac{9}{4}]$ |
$[2]$ |
$\langle\frac{4}{3}\rangle$ |
$(2)$ |
$x^3 + b_{5} \pi^2 x^2 + a_{4} \pi^2 x + c_{6} \pi^3 + \pi$ |
$6$ |
$0$ |
$72$ |
$36$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.14a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$14$ |
$10$ |
$24$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{9}{4}]$ |
$[\frac{5}{2}]$ |
$\langle\frac{5}{3}\rangle$ |
$(\frac{5}{2})$ |
$x^3 + a_{5} \pi^2 x^2 + b_{7} \pi^3 x + \pi$ |
$2$ |
$0$ |
$72$ |
$36$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.18a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$18$ |
$10$ |
$28$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{29}{12}]$ |
$[\frac{7}{2}]$ |
$\langle\frac{7}{3}\rangle$ |
$(\frac{7}{2})$ |
$x^3 + b_{8} \pi^3 x^2 + (b_{10} \pi^4 + a_{7} \pi^3) x + \pi$ |
$2$ |
$0$ |
$648$ |
$324$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.20a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$20$ |
$10$ |
$30$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{5}{2}]$ |
$[4]$ |
$\langle\frac{8}{3}\rangle$ |
$(4)$ |
$x^3 + (b_{11} \pi^4 + a_{8} \pi^3) x^2 + b_{10} \pi^4 x + c_{12} \pi^5 + \pi$ |
$6$ |
$0$ |
$648$ |
$324$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.24a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$24$ |
$10$ |
$34$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{8}{3}]$ |
$[5]$ |
$\langle\frac{10}{3}\rangle$ |
$(5)$ |
$x^3 + (b_{14} \pi^5 + b_{11} \pi^4) x^2 + (b_{13} \pi^5 + a_{10} \pi^4) x + c_{15} \pi^6 + \pi$ |
$6$ |
$0$ |
$5832$ |
$2916$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.26a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$26$ |
$10$ |
$36$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{11}{4}]$ |
$[\frac{11}{2}]$ |
$\langle\frac{11}{3}\rangle$ |
$(\frac{11}{2})$ |
$x^3 + (b_{14} \pi^5 + a_{11} \pi^4) x^2 + (b_{16} \pi^6 + b_{13} \pi^5) x + \pi$ |
$2$ |
$0$ |
$5832$ |
$2916$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.30a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$30$ |
$10$ |
$40$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{35}{12}]$ |
$[\frac{13}{2}]$ |
$\langle\frac{13}{3}\rangle$ |
$(\frac{13}{2})$ |
$x^3 + (b_{17} \pi^6 + b_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6 + a_{13} \pi^5) x + \pi$ |
$2$ |
$0$ |
$52488$ |
$26244$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.32a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$32$ |
$10$ |
$42$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, 3]$ |
$[7]$ |
$\langle\frac{14}{3}\rangle$ |
$(7)$ |
$x^3 + (b_{20} \pi^7 + b_{17} \pi^6 + a_{14} \pi^5) x^2 + (b_{19} \pi^7 + b_{16} \pi^6) x + c_{21} \pi^8 + \pi$ |
$6$ |
$0$ |
$52488$ |
$26244$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.36a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$36$ |
$10$ |
$46$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{19}{6}]$ |
$[8]$ |
$\langle\frac{16}{3}\rangle$ |
$(8)$ |
$x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + b_{17} \pi^6) x^2 + (b_{22} \pi^8 + b_{19} \pi^7 + a_{16} \pi^6) x + c_{24} \pi^9 + \pi$ |
$6$ |
$0$ |
$472392$ |
$236196$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.38a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$38$ |
$10$ |
$48$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{13}{4}]$ |
$[\frac{17}{2}]$ |
$\langle\frac{17}{3}\rangle$ |
$(\frac{17}{2})$ |
$x^3 + (b_{23} \pi^8 + b_{20} \pi^7 + a_{17} \pi^6) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + \pi$ |
$2$ |
$0$ |
$472392$ |
$236196$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-2.3.40a |
$3$ |
$6$ |
$6$ |
$36$ |
$2$ |
$1$ |
$2$ |
$3$ |
$6$ |
$18$ |
$40$ |
$10$ |
$50$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{10}{3}]$ |
$[9]$ |
$\langle6\rangle$ |
$(9)$ |
$x^3 + (b_{26} \pi^9 + b_{23} \pi^8 + b_{20} \pi^7) x^2 + (b_{25} \pi^9 + b_{22} \pi^8 + b_{19} \pi^7) x + c_{27} \pi^{10} + \pi$ |
$6$ |
$0$ |
$531441$ |
$531441/2$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.6a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$6$ |
$10$ |
$11$ |
3.1.6.10a1.1 |
$[\frac{9}{8}, \frac{9}{4}]$ |
$[\frac{1}{4}]$ |
$\langle\frac{1}{6}\rangle$ |
$(\frac{1}{2})$ |
$x^6 + a_{1} \pi x + d_{0} \pi$ |
$2$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.7a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$7$ |
$10$ |
$12$ |
3.1.6.10a1.1 |
$[\frac{5}{4}, \frac{9}{4}]$ |
$[\frac{1}{2}]$ |
$\langle\frac{1}{3}\rangle$ |
$(1)$ |
$x^6 + c_{3} \pi x^3 + a_{2} \pi x^2 + d_{0} \pi$ |
$6$ |
$0$ |
$2$ |
$2$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.9a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$9$ |
$10$ |
$14$ |
3.1.6.10a1.1 |
$[\frac{3}{2}, \frac{9}{4}]$ |
$[1]$ |
$\langle\frac{2}{3}\rangle$ |
$(2)$ |
$x^6 + b_{5} \pi x^5 + a_{4} \pi x^4 + c_{6} \pi^2 + d_{0} \pi$ |
$6$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.10a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$10$ |
$10$ |
$15$ |
3.1.6.10a1.1 |
$[\frac{13}{8}, \frac{9}{4}]$ |
$[\frac{5}{4}]$ |
$\langle\frac{5}{6}\rangle$ |
$(\frac{5}{2})$ |
$x^6 + a_{5} \pi x^5 + b_{7} \pi^2 x + d_{0} \pi$ |
$2$ |
$0$ |
$6$ |
$6$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.12a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$12$ |
$10$ |
$17$ |
3.1.6.10a1.1 |
$[\frac{15}{8}, \frac{9}{4}]$ |
$[\frac{7}{4}]$ |
$\langle\frac{7}{6}\rangle$ |
$(\frac{7}{2})$ |
$x^6 + b_{10} \pi^2 x^4 + b_{8} \pi^2 x^2 + a_{7} \pi^2 x + d_{0} \pi$ |
$2$ |
$0$ |
$18$ |
$18$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.13a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$13$ |
$10$ |
$18$ |
3.1.6.10a1.1 |
$[2, \frac{9}{4}]$ |
$[2]$ |
$\langle\frac{4}{3}\rangle$ |
$(4)$ |
$x^6 + b_{11} \pi^2 x^5 + b_{10} \pi^2 x^4 + a_{8} \pi^2 x^2 + c_{12} \pi^3 + d_{0} \pi$ |
$6$ |
$0$ |
$18$ |
$18$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.15a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$15$ |
$10$ |
$20$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{9}{4}]$ |
$[\frac{5}{2}]$ |
$\langle\frac{5}{3}\rangle$ |
$(5)$ |
$x^6 + b_{11} \pi^2 x^5 + a_{10} \pi^2 x^4 + c_{15} \pi^3 x^3 + b_{14} \pi^3 x^2 + b_{13} \pi^3 x + d_{0} \pi$ |
$6$ |
$0$ |
$54$ |
$54$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.16a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$16$ |
$10$ |
$21$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{55}{24}]$ |
$[\frac{11}{4}]$ |
$\langle\frac{11}{6}\rangle$ |
$(\frac{11}{2})$ |
$x^6 + a_{11} \pi^2 x^5 + b_{16} \pi^3 x^4 + b_{14} \pi^3 x^2 + b_{13} \pi^3 x + d_{0} \pi$ |
$2$ |
$0$ |
$54$ |
$54$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.18a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$18$ |
$10$ |
$23$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{19}{8}]$ |
$[\frac{13}{4}]$ |
$\langle\frac{13}{6}\rangle$ |
$(\frac{13}{2})$ |
$x^6 + b_{17} \pi^3 x^5 + b_{16} \pi^3 x^4 + b_{14} \pi^3 x^2 + (b_{19} \pi^4 + a_{13} \pi^3) x + d_{0} \pi$ |
$2$ |
$0$ |
$162$ |
$162$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.19a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$19$ |
$10$ |
$24$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{29}{12}]$ |
$[\frac{7}{2}]$ |
$\langle\frac{7}{3}\rangle$ |
$(7)$ |
$x^6 + b_{17} \pi^3 x^5 + b_{16} \pi^3 x^4 + c_{21} \pi^4 x^3 + (b_{20} \pi^4 + a_{14} \pi^3) x^2 + b_{19} \pi^4 x + d_{0} \pi$ |
$6$ |
$0$ |
$162$ |
$162$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.21a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$21$ |
$10$ |
$26$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{5}{2}]$ |
$[4]$ |
$\langle\frac{8}{3}\rangle$ |
$(8)$ |
$x^6 + (b_{23} \pi^4 + b_{17} \pi^3) x^5 + (b_{22} \pi^4 + a_{16} \pi^3) x^4 + b_{20} \pi^4 x^2 + b_{19} \pi^4 x + c_{24} \pi^5 + d_{0} \pi$ |
$6$ |
$0$ |
$486$ |
$486$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.22a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$22$ |
$10$ |
$27$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{61}{24}]$ |
$[\frac{17}{4}]$ |
$\langle\frac{17}{6}\rangle$ |
$(\frac{17}{2})$ |
$x^6 + (b_{23} \pi^4 + a_{17} \pi^3) x^5 + b_{22} \pi^4 x^4 + b_{20} \pi^4 x^2 + (b_{25} \pi^5 + b_{19} \pi^4) x + d_{0} \pi$ |
$2$ |
$0$ |
$486$ |
$486$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.24a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$24$ |
$10$ |
$29$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{21}{8}]$ |
$[\frac{19}{4}]$ |
$\langle\frac{19}{6}\rangle$ |
$(\frac{19}{2})$ |
$x^6 + b_{23} \pi^4 x^5 + (b_{28} \pi^5 + b_{22} \pi^4) x^4 + (b_{26} \pi^5 + b_{20} \pi^4) x^2 + (b_{25} \pi^5 + a_{19} \pi^4) x + d_{0} \pi$ |
$2$ |
$0$ |
$1458$ |
$1458$ |
$0$ |
$0\%$ |
$1$ |
3.1.6.10a1.1-1.6.25a |
$3$ |
$6$ |
$6$ |
$36$ |
$1$ |
$1$ |
$1$ |
$6$ |
$6$ |
$36$ |
$25$ |
$10$ |
$30$ |
3.1.6.10a1.1 |
$[\frac{9}{4}, \frac{8}{3}]$ |
$[5]$ |
$\langle\frac{10}{3}\rangle$ |
$(10)$ |
$x^6 + (b_{29} \pi^5 + b_{23} \pi^4) x^5 + (b_{28} \pi^5 + b_{22} \pi^4) x^4 + (b_{26} \pi^5 + a_{20} \pi^4) x^2 + b_{25} \pi^5 x + c_{30} \pi^6 + d_{0} \pi$ |
$6$ |
$0$ |
$1458$ |
$1458$ |
$0$ |
$0\%$ |
$1$ |