Base \(\Q_{83}\)
Degree \(4\)
e \(1\)
f \(4\)
c \(0\)
Galois group $C_4$ (as 4T1)

Related objects

Learn more

Defining polynomial

\(x^{4} - x + 22\)  Toggle raw display


Base field: $\Q_{83}$
Degree $d$: $4$
Ramification exponent $e$: $1$
Residue field degree $f$: $4$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{83}(\sqrt{2})$
Root number: $1$
$|\Gal(K/\Q_{ 83 })|$: $4$
This field is Galois and abelian over $\Q_{83}.$

Intermediate fields


Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{83}(t)$ where $t$ is a root of \( x^{4} - x + 22 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 83 \)$\ \in\Q_{83}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_4$ (as 4T1)
Inertia group:trivial
Unramified degree:$4$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{4} - x^{3} + 2 x^{2} + 4 x + 3$