Base \(\Q_{7}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects


Learn more

Defining polynomial

\(x^{6} + 7\) Copy content Toggle raw display


Base field: $\Q_{7}$
Degree $d$: $6$
Ramification exponent $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $-i$
$\card{ \Gal(K/\Q_{ 7 }) }$: $6$
This field is Galois and abelian over $\Q_{7}.$
Visible slopes:None

Intermediate fields

$\Q_{7}(\sqrt{7\cdot 3})$,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{6} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{5} + 6z^{4} + z^{3} + 6z^{2} + z + 6$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$ (as 6T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$