Defining polynomial
\(x^{6} + 12 x^{5} + 57 x^{4} + 176 x^{3} + 699 x^{2} + 420 x + 1787\)
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $6$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $3$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $-i$ |
$\card{ \Gal(K/\Q_{ 7 }) }$: | $6$ |
This field is Galois and abelian over $\Q_{7}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{7}(\sqrt{7\cdot 3})$, 7.3.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 7.3.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{3} + 6 x^{2} + 4 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 7 \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + 2$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois group: | $C_6$ (as 6T1) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $3$ |
Tame degree: | $2$ |
Wild slopes: | None |
Galois mean slope: | $1/2$ |
Galois splitting model: | $x^{6} + 9 x^{4} - 5 x^{3} + 36 x^{2} - 12 x + 8$ |