Defining polynomial
|
$( x^{5} + x + 4 )^{2} + 7$
|
Invariants
| Base field: | $\Q_{7}$ |
| Degree $d$: | $10$ |
| Ramification index $e$: | $2$ |
| Residue field degree $f$: | $5$ |
| Discriminant exponent $c$: | $5$ |
| Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
| Root number: | $i$ |
| $\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: | $C_{10}$ |
| This field is Galois and abelian over $\Q_{7}.$ | |
| Visible Artin slopes: | $[\ ]$ |
| Visible Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Jump set: | undefined |
| Roots of unity: | $16806 = (7^{ 5 } - 1)$ |
Intermediate fields
| $\Q_{7}(\sqrt{7\cdot 3})$, 7.5.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 7.5.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{5} + x + 4 \)
|
| Relative Eisenstein polynomial: |
\( x^{2} + 7 \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z + 2$ |
| Associated inertia: | $1$ |
| Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
| Galois degree: | $10$ |
| Galois group: | $C_{10}$ (as 10T1) |
| Inertia group: | Intransitive group isomorphic to $C_2$ |
| Wild inertia group: | $C_1$ |
| Galois unramified degree: | $5$ |
| Galois tame degree: | $2$ |
| Galois Artin slopes: | $[\ ]$ |
| Galois Swan slopes: | $[\ ]$ |
| Galois mean slope: | $0.5$ |
| Galois splitting model: | $x^{10} - x^{9} + 14 x^{8} - 7 x^{7} + 85 x^{6} - 29 x^{5} + 218 x^{4} - 8 x^{3} + 216 x^{2} - 48 x + 32$ |