Properties

Label 7.2.5.8a1.1
Base \(\Q_{7}\)
Degree \(10\)
e \(5\)
f \(2\)
c \(8\)
Galois group $F_5$ (as 10T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 6 x + 3 )^{5} + 7$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $10$
Ramification index $e$: $5$
Residue field degree $f$: $2$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_2$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$48 = (7^{ 2 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 5 z^3 + 3 z^2 + 3 z + 5$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $20$
Galois group: $F_5$ (as 10T4)
Inertia group: Intransitive group isomorphic to $C_5$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $5$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8$
Galois splitting model:$x^{10} - x^{8} + 6 x^{6} - 11 x^{4} + 6 x^{2} - 5$