Defining polynomial
\(x^{15} + 30 x^{14} + 360 x^{13} + 2180 x^{12} + 6960 x^{11} + 12117 x^{10} + 17860 x^{9} + 33840 x^{8} + 45000 x^{7} + 90640 x^{6} - 100029 x^{5} - 595410 x^{4} - 585880 x^{3} + 441960 x^{2} + 576240 x + 404231\)
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $5$ |
Residue field degree $f$: | $3$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 7 }) }$: | $3$ |
This field is not Galois over $\Q_{7}.$ | |
Visible slopes: | None |
Intermediate fields
7.3.0.1, 7.5.4.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 7.3.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of
\( x^{3} + 6 x^{2} + 4 \)
|
Relative Eisenstein polynomial: |
\( x^{5} + 7 \)
$\ \in\Q_{7}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^{4} + 5z^{3} + 3z^{2} + 3z + 5$ |
Associated inertia: | $4$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois group: | $C_3\times F_5$ (as 15T8) |
Inertia group: | Intransitive group isomorphic to $C_5$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $12$ |
Tame degree: | $5$ |
Wild slopes: | None |
Galois mean slope: | $4/5$ |
Galois splitting model: | Not computed |