Properties

Label 7.15.12.1
Base \(\Q_{7}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(12\)
Galois group $F_5\times C_3$ (as 15T8)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 30 x^{14} + 360 x^{13} + 2180 x^{12} + 6960 x^{11} + 12117 x^{10} + 17860 x^{9} + 33840 x^{8} + 45000 x^{7} + 90640 x^{6} - 100029 x^{5} - 595410 x^{4} - 585880 x^{3} + 441960 x^{2} + 576240 x + 404231\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $15$
Ramification exponent $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 7 }) }$: $3$
This field is not Galois over $\Q_{7}.$
Visible slopes:None

Intermediate fields

7.3.0.1, 7.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:7.3.0.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{3} + 6 x^{2} + 4 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{4} + 5z^{3} + 3z^{2} + 3z + 5$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_3\times F_5$ (as 15T8)
Inertia group:Intransitive group isomorphic to $C_5$
Wild inertia group:$C_1$
Unramified degree:$12$
Tame degree:$5$
Wild slopes:None
Galois mean slope:$4/5$
Galois splitting model:Not computed