Properties

Label 7.14.14.23
Base \(\Q_{7}\)
Degree \(14\)
e \(7\)
f \(2\)
c \(14\)
Galois group $C_7^2:C_{12}$ (as 14T23)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} - 28 x^{9} - 42 x^{8} + 14 x^{7} - 98 x^{4} - 49 x^{2} - 294 x + 49\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification exponent $e$: $7$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{7}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 7 }) }$: $1$
This field is not Galois over $\Q_{7}.$
Visible slopes:$[7/6]$

Intermediate fields

$\Q_{7}(\sqrt{3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + \left(7 t + 7\right) x^{2} + 7 t x + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 6t$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_7^2:C_{12}$ (as 14T23)
Inertia group:Intransitive group isomorphic to $C_7:F_7$
Wild inertia group:$C_7^2$
Unramified degree:$2$
Tame degree:$6$
Wild slopes:$[7/6, 7/6]$
Galois mean slope:$341/294$
Galois splitting model: $x^{14} - 564052017496651404892855580211604422 x^{12} - 135825411020953218867930241787417423659980874582494881 x^{11} + 75811883519589942674299379767637656214353258344276668422835062549820961 x^{10} + 39144153636003887008208063010032349479586405132063739601420378359787890257290341025023547 x^{9} + 5047663587170598765567501868196069691755092163157839431659063575235758532787752902274895484503979045094246 x^{8} - 470907362822897887577718440842322058985865332058029697064688554277938164615929247973284124563301367884717369888270005722050 x^{7} - 199320172392387345671748993421356310771073770793192606669349776203335442094606783472097645954616094621839779854919580372154921931261455931607 x^{6} - 21025251627770012417755818336994308045897443210652231728012319935854436543066762583426310469788030616254801940453453245528294159939110522319032355324005060839 x^{5} - 751826141595142513581310138947645247667131938049639934301126443034366267939685155016801629771751120321293462947839690240463801603027079503122776635615558006387469125894664587 x^{4} + 17257831124493053974186183593098924557874277864946824673755099745768201179596505061618653597843545143086468641365005622855605481990872712845243621315832251440455190007489380267259097587717248 x^{3} + 1664547093729054922876561083905083230663102036744307636433972327382900097602038742676077885534851177109892079982942254013930449549661711997313996852317524536857675776431894720058536088301304052205251855271786 x^{2} + 14499476047975901154178026690776462368807232737114586705225398160195364038861937990525542097189912540577754192830728491091652184028817626427960501691243317101590048194127606470422729925675814264816004094765600039079677544625 x - 490048607778372600714507891532907490580339413112615848851678891443769113698093596786701938869534995472555918865290505706943145573737672024363721024537849564053640214381300880276735261555501662660044239249930738720475994612327310853051786681$ Copy content Toggle raw display