Defining polynomial
\(x^{13} + 7\)
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $13$ |
Ramification exponent $e$: | $13$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{7}(\sqrt{3})$ |
Root number: | $1$ |
$\card{ \Aut(K/\Q_{ 7 }) }$: | $1$ |
This field is not Galois over $\Q_{7}.$ | |
Visible slopes: | None |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$. |
Unramified/totally ramified tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: |
\( x^{13} + 7 \)
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $F_{13}$ (as 13T6) |
Inertia group: | $C_{13}$ (as 13T1) |
Wild inertia group: | $C_1$ |
Unramified degree: | $12$ |
Tame degree: | $13$ |
Wild slopes: | None |
Galois mean slope: | $12/13$ |
Galois splitting model: |
$x^{13} - 26 x^{12} + 312 x^{11} - 2288 x^{10} + 11440 x^{9} - 41184 x^{8} + 109824 x^{7} - 219648 x^{6} + 329472 x^{5} - 366080 x^{4} + 292864 x^{3} - 159744 x^{2} + 53248 x - 8199$
|