Defining polynomial
$( x^{4} + 8 x^{2} + 54 x + 2 )^{2} + \left(268 x^{2} + 25862\right) ( x^{4} + 8 x^{2} + 54 x + 2 ) - 28944 x^{3} + 930764 x^{2} - 2793096 x + 15785669$
|
Invariants
Base field: | $\Q_{67}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $2$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $4$ |
Discriminant root field: | $\Q_{67}$ |
Root number: | $-1$ |
$\card{ \Gal(K/\Q_{ 67 }) }$: | $8$ |
This field is Galois and abelian over $\Q_{67}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{67}(\sqrt{2})$, $\Q_{67}(\sqrt{67})$, $\Q_{67}(\sqrt{67\cdot 2})$, 67.4.0.1, 67.4.2.1, 67.4.2.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 67.4.0.1 $\cong \Q_{67}(t)$ where $t$ is a root of
\( x^{4} + 8 x^{2} + 54 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{2} + 67 \)
$\ \in\Q_{67}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_2\times C_4$ (as 8T2) |
Inertia group: | Intransitive group isomorphic to $C_2$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $4$ |
Tame degree: | $2$ |
Wild slopes: | None |
Galois mean slope: | $1/2$ |
Galois splitting model: | Not computed |