Properties

Label 67.8.4.1
Base \(\Q_{67}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 8 x^{2} + 54 x + 2 )^{2} + \left(268 x^{2} + 25862\right) ( x^{4} + 8 x^{2} + 54 x + 2 ) - 28944 x^{3} + 930764 x^{2} - 2793096 x + 15785669$ Copy content Toggle raw display

Invariants

Base field: $\Q_{67}$
Degree $d$: $8$
Ramification exponent $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{67}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 67 }) }$: $8$
This field is Galois and abelian over $\Q_{67}.$
Visible slopes:None

Intermediate fields

$\Q_{67}(\sqrt{2})$, $\Q_{67}(\sqrt{67})$, $\Q_{67}(\sqrt{67\cdot 2})$, 67.4.0.1, 67.4.2.1, 67.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:67.4.0.1 $\cong \Q_{67}(t)$ where $t$ is a root of \( x^{4} + 8 x^{2} + 54 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 67 \) $\ \in\Q_{67}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $4$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:Not computed