Base \(\Q_{5}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Learn more

Defining polynomial

\(x^{8} + 15 x^{4} + 100\)  Toggle raw display


Base field: $\Q_{5}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{5}$
Root number: $-1$
$|\Gal(K/\Q_{ 5 })|$: $8$
This field is Galois and abelian over $\Q_{5}.$

Intermediate fields

$\Q_{5}(\sqrt{2})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5\cdot 2})$,,,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{4} - 5 t^{2} \)$\ \in\Q_{5}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_2\times C_4$ (as 8T2)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{8} + 20 x^{6} + 110 x^{4} + 200 x^{2} + 100$