Defining polynomial
\(x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233\) |
Invariants
Base field: | $\Q_{5}$ |
Degree $d$: | $6$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $4$ |
Discriminant root field: | $\Q_{5}(\sqrt{2})$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 5 }) }$: | $6$ |
This field is Galois over $\Q_{5}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{5}(\sqrt{2})$, 5.3.2.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{5}(\sqrt{2})$ $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{2} + 4 x + 2 \) |
Relative Eisenstein polynomial: | \( x^{3} + 5 \) $\ \in\Q_{5}(t)[x]$ |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $S_3$ (as 6T2) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $2$ |
Tame degree: | $3$ |
Wild slopes: | None |
Galois mean slope: | $2/3$ |
Galois splitting model: | $x^{6} - 3 x^{5} + x^{4} + 3 x^{3} + x^{2} - 3 x + 1$ |