Properties

Label 47.3.2.1
Base \(\Q_{47}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)
Galois group $S_3$ (as 3T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 47\) Copy content Toggle raw display

Invariants

Base field: $\Q_{47}$
Degree $d$: $3$
Ramification exponent $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{47}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 47 }) }$: $1$
This field is not Galois over $\Q_{47}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 47 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{47}$
Relative Eisenstein polynomial: \( x^{3} + 47 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $S_3$ (as 3T2)
Inertia group: $C_3$ (as 3T1)
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $3$
Wild slopes: None
Galois mean slope: $2/3$
Galois splitting model: $x^{3} - 6 x^{2} + 12 x - 55$ Copy content Toggle raw display