Defining polynomial
$( x^{2} + 38 x + 6 )^{4} + 82 ( x^{2} + 38 x + 6 )^{2} + 232880 ( x^{2} + 38 x + 6 ) + 82674081$
|
Invariants
Base field: | $\Q_{41}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{41}$ |
Root number: | $-1$ |
$\card{ \Gal(K/\Q_{ 41 }) }$: | $8$ |
This field is Galois and abelian over $\Q_{41}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{41}(\sqrt{3})$, $\Q_{41}(\sqrt{41})$, $\Q_{41}(\sqrt{41\cdot 3})$, 41.4.2.1, 41.4.3.1, 41.4.3.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{41}(\sqrt{3})$ $\cong \Q_{41}(t)$ where $t$ is a root of
\( x^{2} + 38 x + 6 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 41 \)
$\ \in\Q_{41}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_2\times C_4$ (as 8T2) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $2$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | Not computed |