Properties

Label 41.8.6.1
Base \(\Q_{41}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 38 x + 6 )^{4} + 82 ( x^{2} + 38 x + 6 )^{2} + 232880 ( x^{2} + 38 x + 6 ) + 82674081$ Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{41}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 41 }) }$: $8$
This field is Galois and abelian over $\Q_{41}.$
Visible slopes:None

Intermediate fields

$\Q_{41}(\sqrt{3})$, $\Q_{41}(\sqrt{41})$, $\Q_{41}(\sqrt{41\cdot 3})$, 41.4.2.1, 41.4.3.1, 41.4.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{41}(\sqrt{3})$ $\cong \Q_{41}(t)$ where $t$ is a root of \( x^{2} + 38 x + 6 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 41 \) $\ \in\Q_{41}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $4$
Wild slopes: None
Galois mean slope: $3/4$
Galois splitting model:Not computed