Properties

Label 41.8.4.1
Base \(\Q_{41}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 23 x + 6 )^{2} + \left(3772 x^{3} + 5335658 x^{2} + 3354711184 x + 791201326284\right) ( x^{4} + 23 x + 6 ) + 137543151000 x^{3} + 8953230680 x^{2} - 9808803100 x + 787157129416$ Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $8$
Ramification exponent $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{41}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 41 }) }$: $8$
This field is Galois and abelian over $\Q_{41}.$
Visible slopes:None

Intermediate fields

$\Q_{41}(\sqrt{3})$, $\Q_{41}(\sqrt{41})$, $\Q_{41}(\sqrt{41\cdot 3})$, 41.4.0.1, 41.4.2.1, 41.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:41.4.0.1 $\cong \Q_{41}(t)$ where $t$ is a root of \( x^{4} + 23 x + 6 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 943 x + 41 \) $\ \in\Q_{41}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Unramified degree: $4$
Tame degree: $2$
Wild slopes: None
Galois mean slope: $1/2$
Galois splitting model:Not computed