Defining polynomial
$( x^{2} + 33 x + 2 )^{4} + \left(-132 x + 6526\right) ( x^{2} + 33 x + 2 )^{3} + \left(-358578 x + 5888131\right) ( x^{2} + 33 x + 2 )^{2} + \left(-233225058 x + 1265338935\right) ( x^{2} + 33 x + 2 ) - 42068118015 x - 2558886565$
|
Invariants
Base field: | $\Q_{37}$ |
Degree $d$: | $8$ |
Ramification exponent $e$: | $4$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{37}$ |
Root number: | $-1$ |
$\card{ \Gal(K/\Q_{ 37 }) }$: | $8$ |
This field is Galois and abelian over $\Q_{37}.$ | |
Visible slopes: | None |
Intermediate fields
$\Q_{37}(\sqrt{2})$, $\Q_{37}(\sqrt{37})$, $\Q_{37}(\sqrt{37\cdot 2})$, 37.4.2.1, 37.4.3.3, 37.4.3.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{37}(\sqrt{2})$ $\cong \Q_{37}(t)$ where $t$ is a root of
\( x^{2} + 33 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + 148 t + 1295 \)
$\ \in\Q_{37}(t)[x]$
|
Ramification polygon
Not computedInvariants of the Galois closure
Galois group: | $C_2\times C_4$ (as 8T2) |
Inertia group: | Intransitive group isomorphic to $C_4$ |
Wild inertia group: | $C_1$ |
Unramified degree: | $2$ |
Tame degree: | $4$ |
Wild slopes: | None |
Galois mean slope: | $3/4$ |
Galois splitting model: | Not computed |