Properties

Label 37.8.6.2
Base \(\Q_{37}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 33 x + 2 )^{4} + \left(-132 x + 6526\right) ( x^{2} + 33 x + 2 )^{3} + \left(-358578 x + 5888131\right) ( x^{2} + 33 x + 2 )^{2} + \left(-233225058 x + 1265338935\right) ( x^{2} + 33 x + 2 ) - 42068118015 x - 2558886565$ Copy content Toggle raw display

Invariants

Base field: $\Q_{37}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{37}$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 37 }) }$: $8$
This field is Galois and abelian over $\Q_{37}.$
Visible slopes:None

Intermediate fields

$\Q_{37}(\sqrt{2})$, $\Q_{37}(\sqrt{37})$, $\Q_{37}(\sqrt{37\cdot 2})$, 37.4.2.1, 37.4.3.3, 37.4.3.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{37}(\sqrt{2})$ $\cong \Q_{37}(t)$ where $t$ is a root of \( x^{2} + 33 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 148 t + 1295 \) $\ \in\Q_{37}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Unramified degree: $2$
Tame degree: $4$
Wild slopes: None
Galois mean slope: $3/4$
Galois splitting model:Not computed