Properties

Label 3.9.12.16
Base \(\Q_{3}\)
Degree \(9\)
e \(3\)
f \(3\)
c \(12\)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 9 x^{8} + 27 x^{7} + 36 x^{6} + 54 x^{5} + 81 x^{4} + 675 x^{3} + 2025 x^{2} - 3861\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification exponent $e$: $3$
Residue field degree $f$: $3$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $3$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[2]$

Intermediate fields

3.3.0.1, 3.3.4.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 3 x^{2} + 18 t + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 1$
Associated inertia:$2$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_3\times S_3$ (as 9T4)
Inertia group:Intransitive group isomorphic to $C_3$
Wild inertia group:$C_3$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2]$
Galois mean slope:$4/3$
Galois splitting model:$x^{9} + 6 x^{7} - 8 x^{6} - 9 x^{5} - 60 x^{4} - 15 x^{3} - 18 x^{2} + 108 x + 8$