Base \(\Q_{3}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more

Defining polynomial

\(x^{8} - x^{3} + 2\)  Toggle raw display


Base field: $\Q_{3}$
Degree $d$: $8$
Ramification exponent $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $8$
This field is Galois and abelian over $\Q_{3}.$

Intermediate fields


Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{8} - x^{3} + 2 \)  Toggle raw display
Relative Eisenstein polynomial:\( x - 3 \)$\ \in\Q_{3}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} + 8 x^{6} + 20 x^{4} + 16 x^{2} + 2$