Defining polynomial
\(x^{6} + 18 x^{5} + 114 x^{4} + 344 x^{3} + 732 x^{2} + 744 x + 296\) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $8$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\card{ \Gal(K/\Q_{ 3 }) }$: | $6$ |
This field is Galois and abelian over $\Q_{3}.$ | |
Visible slopes: | $[2]$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$, 3.3.4.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) |
Relative Eisenstein polynomial: | \( x^{3} + 6 x^{2} + 12 \) $\ \in\Q_{3}(t)[x]$ |
Ramification polygon
Data not computedInvariants of the Galois closure
Galois group: | $C_6$ (as 6T1) |
Inertia group: | Intransitive group isomorphic to $C_3$ |
Wild inertia group: | $C_3$ |
Unramified degree: | $2$ |
Tame degree: | $1$ |
Wild slopes: | $[2]$ |
Galois mean slope: | $4/3$ |
Galois splitting model: | $x^{6} - 14 x^{3} + 63 x^{2} + 168 x + 161$ |