Properties

Label 3.6.11.9
Base \(\Q_{3}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(11\)
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification exponent $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\card{ \Gal(K/\Q_{ 3 }) }$: $6$
This field is Galois over $\Q_{3}.$
Visible slopes:$[5/2]$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.3.5.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{6} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{2} + 1$,$z^{3} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois group:$S_3$ (as 6T2)
Inertia group:$S_3$ (as 6T2)
Wild inertia group:$C_3$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:$[5/2]$
Galois mean slope:$11/6$
Galois splitting model:$x^{6} + 3$