Properties

Label 3.15.25.1
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(25\)
Galois group $C_7^3:C_6$ (as 15T44)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} - 144 x^{14} + 8928 x^{13} - 268815 x^{12} + 3293595 x^{11} - 2677644 x^{10} + 27392778 x^{9} + 95260860 x^{8} + 89837829 x^{7} + 94301280 x^{6} + 184425093 x^{5} + 168206301 x^{4} + 29757699 x^{3} - 27476010 x^{2} - 6703884 x + 3121821\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $25$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[5/2]$

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(18 t^{4} + 9 t^{2} + 9 t\right) x^{2} + \left(9 t^{4} + 9 t^{2} + 18 t + 18\right) x + 18 t^{2} + 18 t + 21 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois group:$C_7^3:C_6$ (as 15T44)
Inertia group:Intransitive group isomorphic to $C_3^4:S_3$
Wild inertia group:$C_3^5$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2, 5/2]$
Galois mean slope:$1051/486$
Galois splitting model: $x^{15} - 9 x^{12} - 27 x^{9} + 108 x^{6} + 81 x^{3} - 243$ Copy content Toggle raw display