Defining polynomial
\(x^{15} - 33 x^{14} + 918 x^{13} - 219 x^{12} - 3123 x^{11} + 45306 x^{10} + 224379 x^{9} + 506979 x^{8} + 591624 x^{7} + 248859 x^{6} - 31995 x^{5} - 11178 x^{4} + 15957 x^{3} + 1701 x^{2} - 1458 x + 243\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
Root number: | $-i$ |
$\card{ \Aut(K/\Q_{ 3 }) }$: | $1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible slopes: | $[3/2]$ |
Intermediate fields
3.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(6 t^{4} + 6 t^{3} + 6 t^{2} + 3 t + 3\right) x^{2} + \left(6 t^{4} + 3 t + 6\right) x + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + t^{4} + 2t + 1$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois group: | $C_3^4:C_{10}$ (as 15T33) |
Inertia group: | Intransitive group isomorphic to $C_3^3:S_3$ |
Wild inertia group: | $C_3^4$ |
Unramified degree: | $5$ |
Tame degree: | $2$ |
Wild slopes: | $[3/2, 3/2, 3/2, 3/2]$ |
Galois mean slope: | $241/162$ |
Galois splitting model: |
$x^{15} + 18 x^{13} - x^{12} + 90 x^{11} - 54 x^{10} - 32 x^{9} - 648 x^{8} - 945 x^{7} - 1781 x^{6} - 1242 x^{5} - 198 x^{4} - 802 x^{3} + 225 x^{2} + 189 x - 23$
|