Properties

Label 3.15.15.6
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $C_3^4:C_{10}$ (as 15T33)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} - 33 x^{14} + 918 x^{13} - 219 x^{12} - 3123 x^{11} + 45306 x^{10} + 224379 x^{9} + 506979 x^{8} + 591624 x^{7} + 248859 x^{6} - 31995 x^{5} - 11178 x^{4} + 15957 x^{3} + 1701 x^{2} - 1458 x + 243\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{4} + 6 t^{3} + 6 t^{2} + 3 t + 3\right) x^{2} + \left(6 t^{4} + 3 t + 6\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^{4} + 2t + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:C_{10}$ (as 15T33)
Inertia group:Intransitive group isomorphic to $C_3^3:S_3$
Wild inertia group:$C_3^4$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2]$
Galois mean slope:$241/162$
Galois splitting model: $x^{15} + 18 x^{13} - x^{12} + 90 x^{11} - 54 x^{10} - 32 x^{9} - 648 x^{8} - 945 x^{7} - 1781 x^{6} - 1242 x^{5} - 198 x^{4} - 802 x^{3} + 225 x^{2} + 189 x - 23$ Copy content Toggle raw display