Defining polynomial
\(x^{15} + 15 x^{14} + 414 x^{13} + 8511 x^{12} + 79749 x^{11} + 298971 x^{10} + 462087 x^{9} + 525123 x^{8} + 543672 x^{7} + 408591 x^{6} + 255312 x^{5} + 135351 x^{4} + 37098 x^{3} + 8505 x^{2} + 243\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $15$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $i$ |
$\card{ \Aut(K/\Q_{ 3 }) }$: | $1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible slopes: | $[3/2]$ |
Intermediate fields
3.5.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(6 t^{3} + 6 t^{2} + 3\right) x^{2} + \left(6 t^{3} + 3 t^{2} + 3 t\right) x + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + t^{3} + 2t^{2} + 2t$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[1, 0]$ |
Invariants of the Galois closure
Galois group: | $C_3^4:C_{10}$ (as 15T33) |
Inertia group: | Intransitive group isomorphic to $C_3^3:S_3$ |
Wild inertia group: | $C_3^4$ |
Unramified degree: | $5$ |
Tame degree: | $2$ |
Wild slopes: | $[3/2, 3/2, 3/2, 3/2]$ |
Galois mean slope: | $241/162$ |
Galois splitting model: |
$x^{15} - 2 x^{12} - 5 x^{9} + 2 x^{6} + 4 x^{3} + 1$
|